大学入試問題#275 産業医科大学(2013) #区分求積法 - 質問解決D.B.(データベース)

大学入試問題#275 産業医科大学(2013) #区分求積法

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{\displaystyle \sum_{k=1}^{2n} (k+n)^2}{\displaystyle \sum_{k=1}^{2n} k^2}$

出典:2013年産業医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{\displaystyle \sum_{k=1}^{2n} (k+n)^2}{\displaystyle \sum_{k=1}^{2n} k^2}$

出典:2013年産業医科大学 入試問題
投稿日:2022.08.08

<関連動画>

福田の数学〜北里大学2022年医学部第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)iを虚数単位とし、$α= -2+2i,β=3+i$とする。
このとき、$α^5$の値は[ア]である。
zは等式 $2|z-α| = |z-β|$を満たす複素数全体を動くとする。
このとき、複素数平面上の点P(z) が描く図形は円であり、その中心を表す複素数は[イ]である。
また、 |z| の最大値は[ウ]である。

2022北里大学医学部過去問
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(6)〜平均と分散

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(6)$n$個の値からなるデータがあり,データの値の総和が4,データの値の2乗の総和が26,データの分散が3であるとする.このとき,データの個数$n$は$\boxed{キ}$である.

2022立教大学経済学部過去問
この動画を見る 

数学「大学入試良問集」【7−3 絶対値と解の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#法政大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)=|2x^2-10x+9|$とおく。
(1)$y=f(x)$のグラフをかけ。
(2)$y=f(x)$のグラフと直線$y=ax+1$がちょうど4個の共通点をもつような、実数の定数$a$の値の範囲を求めよ。
この動画を見る 

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、$p_{ 2 }=\dfrac{\fbox{ア}}{\fbox{イ}}, p_{ 3 }=\dfrac{\fbox{ウ}}{\fbox{エ}}$
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率を$p_{ n }$とすると、次式が成り立つ。
$p_{ 2 }=\dfrac{\fbox{オカ}}{\fbox{キク}}, p_{ 3 }=\dfrac{\fbox{ケコ}}{\fbox{サシ}}$
n回目の試行開始時点で袋に人っている玉の個数$M_{ n } はM_{ n }=n+\fbox{ス}$であり、この時点で袋に入っていると期待される赤玉の個数$R_{ n }はR_{ n }=M_{ n }×P_{ n }$と表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて$\fbox{セ}$個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数は$R_{ n+1 }=R_{ n }+(1-P_{ n })×\fbox{セ}$となる。したがって、
$P_{ n+1 }=\dfrac{n+\fbox{ソ}}{n+\fbox{タ}}×P_{ n }+\dfrac{1}{n+\fbox{チ}}$
が成り立つ。このことから、$(n+3)×(n+\fbox{ツ})×(P_{n}-\dfrac{\fbox{テ}}{\fbox{ト}})$がnに依らず一定となる事が分かり、$\displaystyle \lim_{ n \to \infty } P_n =\dfrac{\fbox{ナ}}{\fbox{ニ}}$と求められる。

2023杏林大学医過去問
この動画を見る 

福田の数学〜過去の入試問題(期間限定)〜慶應義塾大学理工学部2020第5問〜平面ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{5}$ 平行四辺形$ABCD$において、$AB=2, BC=3$とし、対角線$AC$の長さを$4$とする。 辺$AB, BC, CD, DA$上にそれぞれ点$E, F, G, H$を$AE=BF=CG=DH=x$を満たすようにとる。ただし、$x$は$0x<2$の範囲を動くとする。さらに、対角線$AC$上に点$P$を$AP=x^2$を満たすようにとる。以下では、平行四辺形$ABCD$の面積を$S$とする。
(1) $\triangle$$AEP$の面積を$T_1$とする。$\frac{T_1}{S}$は、$x$を用いて表すと$\fbox{ テ }$となる。
(2) $\triangle$$EFP$ の面積を$T_2$とする。$\frac{T_2}{S}$は、$x=$$\fbox{ ト }$のとき最大値$\fbox{ ナ }$をとる。
(3) $\triangle$$GHP$の面積を$T_3$とする。$\frac{T_3}{S}$となるのは$x=$$\fbox{ ニ }$のときである。
(4) 点$P$が線分$EH$上にあるのは$x=$$\fbox{ ヌ }$のときである。
この動画を見る 
PAGE TOP