なんとなくの雰囲気で変域の問題を解くと間違える 日比谷高校 2022入試問題100題解説67問目!! オープニング失敗! - 質問解決D.B.(データベース)

なんとなくの雰囲気で変域の問題を解くと間違える  日比谷高校 2022入試問題100題解説67問目!!  オープニング失敗!

問題文全文(内容文):
1次関数$y=ax+4$においてxの変域が$-3 \leqq x \leqq 6$のとき
yの変域が$2 \leqq y \leqq 5$である。
定数aの値を求めよ。

2022日比谷高等学校
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
1次関数$y=ax+4$においてxの変域が$-3 \leqq x \leqq 6$のとき
yの変域が$2 \leqq y \leqq 5$である。
定数aの値を求めよ。

2022日比谷高等学校
投稿日:2022.02.23

<関連動画>

【高校受験対策】数学-死守32

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。

②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。

③$4(2a - 3) - 2(3a - 5)$を計算しなさい。

④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。

⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。

⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。

⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。

⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。

⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。

⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。

ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い

図は動画内参照
この動画を見る 

【中2 P.54】2編の力だめし

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしなさい.

1.①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y-3 \\
4(x-2)=3(y-6)
\end{array}
\right.
\end{eqnarray}$

②$3x-y=-2x+3y=7$

③$\begin{eqnarray}
\left\{
\begin{array}{l}
0.2x+0.3y=1 \\
x-14=3y
\end{array}
\right.
\end{eqnarray}$

④$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{x}{3}+\dfrac{x}{4}=3 \\
2(x+1)=5y-6
\end{array}
\right.
\end{eqnarray}$

2
$\begin{eqnarray}
\left\{
\begin{array}{l}
x-5y=8 \\
3x+2y=7
\end{array}
\right.
\end{eqnarray}$

図は動画内参照
この動画を見る 

息抜き ゆく年くる年連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2019x+2020y=4055 \\
2020x+2019y=4023
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

久しぶりにあの条件発動 札幌大谷

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
AC=?
*図は動画内参照

札幌大谷高等学校
この動画を見る 

【数学】中2-38 一次関数の利用① 料金編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の表はとある携帯の料金プランです。
1か月に(分話したときの料金をy円とする。
①3つのプランのXとYの関係を式にすると?




②1か月に180分話したとき1ヶ月の 料金を安い順番にすると?

③Bプランの料金がAプランより安くなるのは1ヵ月に何分より多く話したとき?
※表は動画内参照
この動画を見る 
PAGE TOP