○○に気づけば楽勝すぎる!?ひらめくと超気持ちいい一題!【中学受験算数】 - 質問解決D.B.(データベース)

○○に気づけば楽勝すぎる!?ひらめくと超気持ちいい一題!【中学受験算数】

問題文全文(内容文):
下図でxは何度?
*図は動画内参照
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: こばちゃん塾
問題文全文(内容文):
下図でxは何度?
*図は動画内参照
投稿日:2023.11.22

<関連動画>

2024年渋谷教育学園渋谷中算数大問①(1)~(3)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他#約数・倍数を利用する問題#過去問解説(学校別)#渋谷教育学園渋谷中学
指導講師: 重吉
問題文全文(内容文):
(1)
$1-0.625\div(20\dfrac{1}{24}\div20)\times(\dfrac{1}{12}-0.04)$を計算しなさい。

(2)
1から100までの100個の整数のうち、3でも7でも割り切れない偶数は何個ありますか。

(3)
【A】は整数Aを2で割り、その商を2で割っていき、商が1になるまで続けたときの2で割った数を表しています。
例えば、
$13\div2=6 余り 1$
$6\div2=3$
$3\div2=1 余り 1$
となるので、【13】= 3です。
このとき【【2024】+7】×【33】を求めなさい。
この動画を見る 

【算数練習】87(”大人”は頭の体操)

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積#相似と相似を利用した問題#図形の移動#平面図形その他
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
黄色い部分の面積は?
※AB=BC
※図は動画内参照
この動画を見る 

【算数】小4-22 小数のしくみ①

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
7→一の位
.
9→① 位
5→② 位
2→③ 位
①を④___、
②を⑤___、
③を⑥___って
いうんだ。
あと1を$\displaystyle \frac{ 1 }{ 10 }$すると⑦___
⑦___を$\displaystyle \frac{ 1 }{ 10 }$すると⑧___
⑧___を$\displaystyle \frac{ 1 }{ 10 }$すると⑨___になるんだよ!!
◎次の数は0.001を何個集めた数かな?
⑩0.007→___
⑪0.024→___
⑫0.03→___
⑬0.12→___
◎メモリが表す長さは何㎝?
※数直線は動画内参照
⑭___m
⑮___m
◎次の重さをKg単位にしよう!
⑯3Kg 678g→___Kg
⑰802g→___Kg
⑱9Kg 23g→___Kg
⑲3g→___Kg
この動画を見る 

2024年慶応義塾中等部算数大問①(1)~(5)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#約数・倍数を利用する問題#過去問解説(学校別)#規則性(周期算・方陣算・数列・日暦算・N進法)#場合の数#場合の数#慶應義塾中等部
指導講師: 重吉
問題文全文(内容文):
次の$\Box$に適当な数を入れなさい。
(1)$3\dfrac{17}{24}-2\dfrac{2}{63}\div(1\dfrac{5}{9}\div2\dfrac{1}{12}\div0.7)=\boxed{ ア }ー\dfrac{\boxed{ イ }}{\boxed{ ウ }}$

(2)$(2.88\times7.43+2.57\times1.44\div0.5)\div\dfrac{\boxed{ア}}{\boxed{イ}}=1.2\times56$

(3)6で割っても14で割っても5余る整数のうち、620に近い数は$\Box$です。

(4)0,1,2,3,4,の5個の数字の中から、異なる3個の数字を選んでつくることができる三桁の奇数は全部で$\Box$通りです。

(5)縮尺が1:25000の地図上で18 ㎠の畑があります。この畑の実際の面積は$\boxed{ア}.\boxed{イ}$㎢です。
この動画を見る 

【受験算数】右の図の正三角形ABCを、折れ線ℓ にそって、アの位置からの位置まですぺらないように転がしました。正三角形がイの位置にきたとき、P の位置にくるのは、A、B、Cのどの頂点ですか。

アイキャッチ画像
単元: #算数(中学受験)#平面図形#図形の移動
教材: #予習シ#予習シ算数・小5上#中学受験教材#平面図形
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図の正三角形ABCを、折れ線ℓ にそって、アの位置からの位置まですぺらないように転がしました。これについて、次の問いに答えなさい。
(1) 正三角形がイの位置にきたとき、P の位置にくるのは、A、B、Cのどの頂点ですか。
(2) 頂点Aが動いたあとの線の長さは何cmですか。
この動画を見る 
PAGE TOP