福田の数学〜千葉大学2022年理系第2問〜三角形と三角比 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2022年理系第2問〜三角形と三角比

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標平面において、原点Oと点A(1,0)と点B(0,1)がある。0 \lt t \lt 1に対し、\\
線分BO,OA,ABのそれぞれをt:(1-t)に内分する点をP,Q,Rとする。\\
(1)\triangle PQRの面積をtの式で表せ。\\
(2)\triangle PQRが二等辺三角形になるときのtの値を全て求めよ。\\
(3)\theta = \angle RPQとする。(2)それぞれの場合に\cos\thetaを求めよ。
\end{eqnarray}
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標平面において、原点Oと点A(1,0)と点B(0,1)がある。0 \lt t \lt 1に対し、\\
線分BO,OA,ABのそれぞれをt:(1-t)に内分する点をP,Q,Rとする。\\
(1)\triangle PQRの面積をtの式で表せ。\\
(2)\triangle PQRが二等辺三角形になるときのtの値を全て求めよ。\\
(3)\theta = \angle RPQとする。(2)それぞれの場合に\cos\thetaを求めよ。
\end{eqnarray}
投稿日:2022.05.14

<関連動画>

2次関数 4STEP数Ⅰ 159 2次関数の最大最小・場合分け3【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=-x²+2x+2 (a≦x≦a+1)の最大値をM(a)、最小値をm(a)とする。
(1) M(a)を求め、b=M(a)のグラフをかけ
(2) m(a)を求め、b=m(a)のグラフをかけ
この動画を見る 

【数Ⅰ】図形と計量:正弦定理をマスター! △ABCにおいて、次のものを求めよ。(2)a=2,c=2√2,C=135°のときA

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+A(旧課程2021年以前)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、次のものを求めよ。
(2)a=2,c=2√2,C=135°のときA
この動画を見る 

2次関数 4STEP数Ⅰ 153 2次関数最大最小場合分け2【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
a<0とする。関数y=-x²+2ax+3a (0≦x≦1)の最小値が-11であるように、定数aの値を定めよ。
この動画を見る 

【数Ⅰ】2次関数:【難問】2変数関数の最大最小:本論

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2-2xy+2y^2=2$ を満たすx,yについて
(2) 2x+yのとりうる値の最大値・最小値を求めよ。
この動画を見る 

【ホーン・フィールドがていねいに解説】数と式 4STEP数Ⅰ 62,64 根号を含む計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式
指導講師: 理数個別チャンネル
問題文全文(内容文):
(4STEP問題62)
√2/(√2-1)の整数部分をa、小数部分をbとする。次の式の値を求めよ。
(1)a (2)b (3)a+b+b²

(4STEP問題64)
次の各場合について、√(x²-10x+25)をxの多項式で表せ。
(1)x≧5 (2)x<5
この動画を見る 
PAGE TOP