大学入試問題#478「これは落とせない問題でしょう。」 福島大学(2022) #方程式 - 質問解決D.B.(データベース)

大学入試問題#478「これは落とせない問題でしょう。」 福島大学(2022) #方程式

問題文全文(内容文):
$(x^2+2x+1)(x^2+2x+9)+12=0$を複素数の範囲で解け。

出典:2022年福島大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
$(x^2+2x+1)(x^2+2x+9)+12=0$を複素数の範囲で解け。

出典:2022年福島大学 入試問題
投稿日:2023.03.14

<関連動画>

東大 不定方程式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数とする.

①$x+y+z=xyz$を満たす$(x,y,z)$をすべて求めよ.$(x\leqq y\leqq z)$
②$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ.

2006東大過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2024医学部第4問〜円板を軸の周りに回転してできる立体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\mathrm{O}$を原点とする$\mathrm{xyz} $平面において、3点 $\mathrm{A(1,\dfrac{2}{\sqrt{3}}, 0), B(-1, \dfrac{2}{\sqrt{3}}, 0), C(0, 0, 2)}$ の定める平面$\mathrm{ABC}$ 上に$\mathrm{O}$ から垂線$\mathrm{OH}$ を下ろす。平面$\mathrm{ABC}$ において、$\mathrm{H}$ を中心とする半径$\mathrm{1}$の円板(内部を含む)$\mathrm{D}$ を考える。
(1)平面$\mathrm{z = t}$ が$\mathrm{D}$と交わるような$\mathrm{t}$の範囲を求めよ。
(2)$\mathrm{D}$を$\mathrm{z}$軸の周りに$\mathrm{1}$回転させるとき、$\mathrm{D}$が通過してできる立体$\mathrm{K}$の体積$\mathrm{V}$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(2)〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)a,bは実数とする。xの3次方程式$x^3+(a+4)x^2-3(a+4)x+b=0$
の実数解が$x=3$のみであるとき、aの値の範囲は$\boxed{\ \ エ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

#富山大学推薦2019#定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{\sqrt{ 3 }} \displaystyle \frac{x}{x^2+1} dx$

出典:2019年富山大学推薦
この動画を見る 

定積分の微分の基本問題 島根大学後期2024 大学入試問題#930

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#島根大学
指導講師: ますただ
問題文全文(内容文):
$a$の正の定数とする.
関数$g(x)$が,$x\gt 0$で定義された連続関数で,
次の等式をみたすとき,$g(x)$と$a$の値を求めよ.

$\displaystyle \int_{a}^{x^3} g(u) du =\log x$

2024島根大学後期過去問題
この動画を見る 
PAGE TOP