【現実は厳しい?】連立方程式:早稲田大学系属早稲田実業学校高等部~全国入試問題解法 - 質問解決D.B.(データベース)

【現実は厳しい?】連立方程式:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

問題文全文(内容文):
入試問題 早稲田大学系属早稲田実業学校高等部

$\begin{eqnarray}
\left\{
\begin{array}{l}
Ax + By = 12 ・・・(ァ)\\
Bx-Ay = 16 ・・・(イ)\\
6x-8y=C  ・・・(ウ)\\
Dx-6y=E ・・・(エ) \\
\end{array}
\right.
\end{eqnarray}$

条件Ⅰ:アとウを連立→解なし。
条件Ⅱ:アとエを連立→解:$x=8,y=9$
条件Ⅲ:「ウとエを連立した解」
   →「アとイを連立した解」
よりの値は$6$大きく、$y$の値は$2$大きい。
①$A,B$の値をそれぞれ求めよ。
②$C.E$の値をそれぞれ求めよ。
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 早稲田大学系属早稲田実業学校高等部

$\begin{eqnarray}
\left\{
\begin{array}{l}
Ax + By = 12 ・・・(ァ)\\
Bx-Ay = 16 ・・・(イ)\\
6x-8y=C  ・・・(ウ)\\
Dx-6y=E ・・・(エ) \\
\end{array}
\right.
\end{eqnarray}$

条件Ⅰ:アとウを連立→解なし。
条件Ⅱ:アとエを連立→解:$x=8,y=9$
条件Ⅲ:「ウとエを連立した解」
   →「アとイを連立した解」
よりの値は$6$大きく、$y$の値は$2$大きい。
①$A,B$の値をそれぞれ求めよ。
②$C.E$の値をそれぞれ求めよ。
投稿日:2020.10.28

<関連動画>

二乗を含む連立方程式 本郷高校

アイキャッチ画像
単元: #連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
$x=?$ $\quad$ $y=?$
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 - 9y^2 + 4x -28 = 0 \\
x + 3y = 6
\end{array}
\right.
\end{eqnarray}

本郷高等学校
この動画を見る 

気付けば一瞬!!式の値 受験生よ。努力が実ることを証明せよ。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$x+\frac{1}{x}=99$のとき
$\frac{2x^2+102x+2}{100x}$の値は?
この動画を見る 

【高校受験対策】数学-死守6

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#比例・反比例#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$5-7$

②$- 6 + 9 \div \dfrac{1}{4}$

③$3\sqrt2\times \sqrt8$

④$2(2a-3b)+(a-5b)$

2.次の問いに答えなさい.

⑤右の図1のように,線分$AB$を直径とする円があります.
円の中心$O$を定規とコンパスを使って作図しなさい.
ただし,点を示す記号$O$をかき入れ,作図に用いた線は消さないこと.

⑥右の図2のような反比例の関係$y =\dfrac{a}{x}$のグラフがあります.
点$O$は原点とします.$a$の値を求めなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5 \\
y=4x-1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧二次方程式$x^2+5x+1=0$を解きなさい.

図は動画内を参照
この動画を見る 

【数学】中2-47 対頂角 同位角 錯角③ 応用編

アイキャッチ画像
単元: #中2数学#平行と合同#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎ℓ//mのとき、$\angle x,\angle y $の大きさを求めよう!


②長方形ABCDを図のように折った。

※図は動画内参照
この動画を見る 

式の値 2通りで解説

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{x}=0.4$のとき$\frac{1}{x+2}=$
この動画を見る 
PAGE TOP