早稲田(商)合同式の基本 - 質問解決D.B.(データベース)

早稲田(商)合同式の基本

問題文全文(内容文):
整数a,b,c,dは次の条件(i),(ii),(iii)を満たしている.
(i)$3 \leqq a \lt b \lt c \lt d$
(ii)$a-b,b-c$は3の倍数,
(iii)$c^a-b^d$は3の倍数でない$a+b+c+d$の最小値 
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数a,b,c,dは次の条件(i),(ii),(iii)を満たしている.
(i)$3 \leqq a \lt b \lt c \lt d$
(ii)$a-b,b-c$は3の倍数,
(iii)$c^a-b^d$は3の倍数でない$a+b+c+d$の最小値 
投稿日:2022.07.02

<関連動画>

大学入試問題#86 防衛医科大学(1988) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(a^n+(1+a)^n)^{\frac{1}{n}}$を求めよ。

出典:1988年防衛医科大学 入試問題
この動画を見る 

大学入試問題#646「似てるけど」 京都工芸繊維大学(2011) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt A \lt \displaystyle \frac{\pi}{2}$
(1)
$\displaystyle \int_{A}^{\frac{\pi}{2}} (\cos\ x)log(\sin\ x) dx$

(2)
$\displaystyle \int_{0}^{A} (\cos\ x)log(\cos\ x) dx$

出典:2011年京都工芸繊維大学後期 入試問題
この動画を見る 

山梨大 複素数の4乗根

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z$複素数
$z^4=-8-8\sqrt{ 3 }i$

出典:山梨大学 過去問
この動画を見る 

福田の数学〜神戸大学2022年文系第1問〜場合分けされた放物線と直線の共有点と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。$x \geqq 0$のとき$f(x)=^2、x \lt 0$のとき$f(x)=-x^2$とし、
曲線$y=f(x)$をC、直線$y=2ax-1$を$l$とする。以下の問いに答えよ。
(1)Cとlの共有点の個数を求めよ。
(2)Cとlがちょうど2個の共有点をもつとする。Cとlで囲まれた図形の面積を求めよ。

2022神戸大学文系過去問
この動画を見る 

福田の数学〜青山学院大学2024理工学部第2問〜法線と面積と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\tan{x}$とする。また、曲線
$\displaystyle C:y=f(x)(-\frac{\pi}{2}\lt x\lt \frac{\pi}{2})$
上の点$(\displaystyle \frac{\pi}{6},f(\frac{\pi}{6}))$における法線を$\ell$とする。
(1)法線$\ell$の方程式は$\displaystyle y=\frac{\fbox{アイ}}{\fbox{ウ}}x+\frac{\fbox{エ}}{\fbox{オ}}\pi+\frac{\sqrt{\fbox{カ}}}{\fbox{キ}}である。$
(2)曲線$C$と$x$軸および法線$\ell$で囲まれた図形の面積は
$\log{a}+b(a=\frac{\fbox{ク}\sqrt{\fbox{ケ}}}{\fbox{コ}},b=\frac{\fbox{サ}}{\fbox{シ}})$
この動画を見る 
PAGE TOP