もし、きんに君が京大数学を解くならこんな感じ。 - 質問解決D.B.(データベース)

もし、きんに君が京大数学を解くならこんな感じ。

問題文全文(内容文):
もし、きんに君が京大数学を解くならこんな感じ。
単元: #大学入試過去問(数学)#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
もし、きんに君が京大数学を解くならこんな感じ。
投稿日:2023.07.02

<関連動画>

福田の数学〜中央大学2021年経済学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$1辺の長さが1の正方形の頂点を時計回りにA,B,C,Dとする。点PはAから
出発し、硬貨を投げるたびに正方形の周上を時計回りに動く。1枚の硬貨を投げて
表が出たときにはPは2だけ進み、裏が出たときにはPは1だけ進む。硬貨を投げた
ときに、表と裏の出る確率は等しいとする。このとき以下の問いに答えよ。

(1)硬貨を5回続けて投げたとき、PがAにいる確率を求めよ。
(2)硬貨を10回続けて投げたとき、PがDにいる確率を求めよ。

2021中央大学経済学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)座標空間内の4点$(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)$を頂点と
する四面体をP、4点$(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)$を頂点
とする四面体をQとする。RをPとQの共通部分とする。Rを平面$z=\frac{1}{3}$で
切ったときの切り口の面積を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

大学入試問題#593「カップラーメン食べながらでも解いて」 関西大学(2011) #三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$x-y=\displaystyle \frac{\pi}{3}$のとき
$\displaystyle \frac{\sin\ x-\sin\ y}{\cos\ x+\cos\ y}$の値を求めよ

出典:2011年関西大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第4問〜定積分と不等式Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ (1)0≦$x$≦$\displaystyle\frac{\pi}{2}$において常に不等式|$b$|≦|$b$+1-$b\cos x$|が成り立つような実数$b$の値の範囲は$\boxed{\ \ シ\ \ }$≦$b$≦$\boxed{\ \ ス\ \ }$である。
以下、$b$を$\boxed{\ \ シ\ \ }$≦$b$≦$\boxed{\ \ ス\ \ }$を満たす0でない実数とし、数列$\left\{a_n\right\}$を
$a_n$=$\displaystyle\int_0^{\frac{\pi}{2}}\frac{\sin x(\cos x)^{n-1}}{(b+1-b\cos x)^n}dx$ (n=1,2,3,...)で定義する。
(2)$\displaystyle\lim_{n \to \infty}b^na_n$=0 が成り立つことを証明しなさい。
(3)$a_1$=$\boxed{\ \ セ\ \ }$である。
(4)$a_{n+1}$を$a_n$,$n$,$b$を用いて表すと$a_{n+1}$=$\boxed{\ \ ソ\ \ }$となる。
(5)$\displaystyle\lim_{n \to \infty}\left\{\frac{1}{1・2}-\frac{1}{2・2^2}+\frac{1}{3・2^3}-...+\frac{(-1)^{n+1}}{n・2^n}\right\}$=$\boxed{\ \ タ\ \ }$である。
この動画を見る 

【高校数学】時間内で誰ができるねん~共通テスト数学ⅠA第4問解説~【大学受験】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(4) $11^4$を$2^4$で割ったときの余りは1に等しい。不定方程式
$11^5x-2^5y=1$
の整数解のうち、$x$が正の整数で最小になるのは、$x=$テト, $y=$ナニヌネノである
この動画を見る 
PAGE TOP