すべての辺の長さが等しい正四角錐 - 質問解決D.B.(データベース)

すべての辺の長さが等しい正四角錐

問題文全文(内容文):
すべての辺の長さが等しい正四角錐
$\angle BAD$は何度?
(1) 60°
(2) 90°
(3) 120°
(4) 実は求められないよ

川端高校
単元: #数学(中学生)#中1数学#立体図形#立体図形その他#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
すべての辺の長さが等しい正四角錐
$\angle BAD$は何度?
(1) 60°
(2) 90°
(3) 120°
(4) 実は求められないよ

川端高校
投稿日:2021.09.10

<関連動画>

中1数学「円とおうぎ形①(弧の長さと面積)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第51回円とおうぎ形①~ (弧の長さと面積)

例1
半径10cmの円の円周の長さと面積を求めなさい。

例2
半径4cm,中心角135度のおうぎ形の弧の長さと面積を求めなさい。
この動画を見る 

高等学校入学試験予想問題:鳥取県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#平面図形#三角形と四角形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 10xy^2\div(-5y)\times 3x$
(2)$ 2x-y-\dfrac{5x+y}{3}$
(3)$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=2 \\
x+2y=8
\end{array}
\right.
\end{eqnarray}$
$ x=?,y=? $

(4)$ 2x^2+3x-1=0 $
$ x=? $

$ \boxed{2}$

$\dfrac{3a-5}{2}=b ・・・・①$
$ 3a-5=2b・・・・②$
$ 3a=2b+5・・・・③$
$ a=\dfrac{2b+5}{3}・・・・④$
「等式の両辺に同じ数を足しても等式が成り立つ」に導く式変形か?

$\boxed{3}$

$ AD\parallel BC,BC=2AD,AD \lt CD,\angle ADC=90°$
$ 台形ABCD,\angle CAE=90°$である.
①$ \triangle ACD \backsim \triangle ECA $の証明をせよ.
②(1)$ DE=? $
(2)$ \triangle EHD=?$
(3)$ FH:GH=?$
この動画を見る 

30秒でスッキリと数学の問題を理解する動画~全国入試問題解法 #Shorts #数学

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3つの連続した奇数を小さい方から順に$a,b,c$とする.
$b^2=2025$のとき,$ac$はいくつか?

この動画を見る 

斜めの正方形はやること決まっている 土浦日大

アイキャッチ画像
単元: #数学(中学生)#中1数学#図形と計量#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
Eの座標は?
*図は動画内参照

土浦日本大学高等学校
この動画を見る 

【中学数学】規則性の問題~高校受験対策~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
n段n列のマス目に以下の規則にしたがって黒い石を置いていく。

【規則】
1段目と段目、1列目とn列目にあるすべてのマスに黒い石を1つずつ置く。
図は3段3列のマス目に、4段4列のマス目にこの規則にしたがって黒い石を置いたものである。

【問題】
1⃣
7段7列のマス目にこの規則にしたがって黒い石を置いたとき、置かれた黒い石の個数を求めよ。

2⃣
n段n列のマス目に、この規則にしたがって黒い石を置き、黒い石が置かれていない残りの
すべてのマスに白い石を1つずつ置きます。
白い石の個数が、黒い石の個数より41個多くなるときnの値を求めよ。

-----------------

動画内図1のようなタイルA,Bを動画内図2のようにすき間なく規則的に並べ、1番目の図形、
2番目の図形、3番目の図形、・・・とする。

1⃣
6番目の図形についてタイルBの枚数を求めよ。

2⃣
n番目の図形について、タイルAとタイルBの枚数の合計をnを使って表せ。

3⃣
タイルAとタイルBの枚数の合計が1861枚になるのは何番目の図形か。

-----------------

動画内図のように黒、白、赤のタイルを規則的に並べます。

1⃣
4番目のそれぞれの枚数を求めよ。

2⃣
n番目の白の枚数をnを使って表せ。

3⃣
すべての枚数が99枚になるのは何番目か求めよ。
この動画を見る 
PAGE TOP