【数学】中2-11 文字式の利用③ 2けたの自然数編 - 質問解決D.B.(データベース)

【数学】中2-11 文字式の利用③ 2けたの自然数編

問題文全文(内容文):
十の位を$a$、一の位を$b$とする
2けたの自然数は①____と表される。
百の位を$a$,十の位を$b$,一の位を$C$とする
3けたの自然数は②____!!

◎2けたの自然数と、その数の十の位と一の位の数を
入れかえてできる数の和が$11$の倍数になることを説明しよう!
【説明】
③____の十の位を$a$、一の位を$b$とすると、
③____は④____,位を入れかえた数は⑤____
と表される。
( ④ )+( ⑤ )=⑥____=⑦____
⑧____は整数なので、
⑨____は⑩____。
よって2桁の自然数と、その数の十の位と一の位数を
入れかえてできる数の和は、11倍数になる。

◎3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差が99の倍数になることを説明しよう!
【説明】
⑪____の百の位を$a$、十の位を$b$、一の位を$C$とすると、
⑪____は⑫____,位を入れかえた数は⑬____
と表される。
( ⑫ )-( ⑬ )=⑭____=⑮____
⑯____は整数なので、
⑰____は⑱____。
よって、3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差は99の倍数になる。
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
十の位を$a$、一の位を$b$とする
2けたの自然数は①____と表される。
百の位を$a$,十の位を$b$,一の位を$C$とする
3けたの自然数は②____!!

◎2けたの自然数と、その数の十の位と一の位の数を
入れかえてできる数の和が$11$の倍数になることを説明しよう!
【説明】
③____の十の位を$a$、一の位を$b$とすると、
③____は④____,位を入れかえた数は⑤____
と表される。
( ④ )+( ⑤ )=⑥____=⑦____
⑧____は整数なので、
⑨____は⑩____。
よって2桁の自然数と、その数の十の位と一の位数を
入れかえてできる数の和は、11倍数になる。

◎3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差が99の倍数になることを説明しよう!
【説明】
⑪____の百の位を$a$、十の位を$b$、一の位を$C$とすると、
⑪____は⑫____,位を入れかえた数は⑬____
と表される。
( ⑫ )-( ⑬ )=⑭____=⑮____
⑯____は整数なので、
⑰____は⑱____。
よって、3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差は99の倍数になる。
投稿日:2013.03.17

<関連動画>

計算のテクニック!以後お見知りおきを♪~全国入試問題解法 #Shorts #数学

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$2021\times2019-2018^2-2020\times2023+2019^2+2020$を計算せよ.
この動画を見る 

【小5 算数】  小5-32 四角形の角度

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中2数学#平面図形#角度と面積#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
小5 算数 四角形の角度
以下の問に答えよ
①四角形の4つの内角のうち、3つはそれぞれ110℃、100℃、80℃。
 角(あ)の角度は?
②四角形の4つの内角のうち、3つはそれぞれ120℃、90℃、80℃。
 角(い)、外角(う)の角度は?
※図は動画内参照
この動画を見る 

気づけば一瞬!!長方形の面積=❓

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#三角形と四角形#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形の面積=?
*図は動画内参照
この動画を見る 

【3分で理解!5分で発展的学習!】二次方程式:山口県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
差が1である大小2つの正の数がある.
これらの積が3であるとき,2つの数のうち,大きい方の数を求めなさい.

山口県高校過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解

アイキャッチ画像
単元: #連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$ 
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。

2017一橋大学文系過去問
この動画を見る 
PAGE TOP