【数学】中2-11 文字式の利用③ 2けたの自然数編 - 質問解決D.B.(データベース)

【数学】中2-11 文字式の利用③ 2けたの自然数編

問題文全文(内容文):
十の位を$a$、一の位を$b$とする
2けたの自然数は①____と表される。
百の位を$a$,十の位を$b$,一の位を$C$とする
3けたの自然数は②____!!

◎2けたの自然数と、その数の十の位と一の位の数を
入れかえてできる数の和が$11$の倍数になることを説明しよう!
【説明】
③____の十の位を$a$、一の位を$b$とすると、
③____は④____,位を入れかえた数は⑤____
と表される。
( ④ )+( ⑤ )=⑥____=⑦____
⑧____は整数なので、
⑨____は⑩____。
よって2桁の自然数と、その数の十の位と一の位数を
入れかえてできる数の和は、11倍数になる。

◎3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差が99の倍数になることを説明しよう!
【説明】
⑪____の百の位を$a$、十の位を$b$、一の位を$C$とすると、
⑪____は⑫____,位を入れかえた数は⑬____
と表される。
( ⑫ )-( ⑬ )=⑭____=⑮____
⑯____は整数なので、
⑰____は⑱____。
よって、3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差は99の倍数になる。
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
十の位を$a$、一の位を$b$とする
2けたの自然数は①____と表される。
百の位を$a$,十の位を$b$,一の位を$C$とする
3けたの自然数は②____!!

◎2けたの自然数と、その数の十の位と一の位の数を
入れかえてできる数の和が$11$の倍数になることを説明しよう!
【説明】
③____の十の位を$a$、一の位を$b$とすると、
③____は④____,位を入れかえた数は⑤____
と表される。
( ④ )+( ⑤ )=⑥____=⑦____
⑧____は整数なので、
⑨____は⑩____。
よって2桁の自然数と、その数の十の位と一の位数を
入れかえてできる数の和は、11倍数になる。

◎3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差が99の倍数になることを説明しよう!
【説明】
⑪____の百の位を$a$、十の位を$b$、一の位を$C$とすると、
⑪____は⑫____,位を入れかえた数は⑬____
と表される。
( ⑫ )-( ⑬ )=⑭____=⑮____
⑯____は整数なので、
⑰____は⑱____。
よって、3けたの自然数と、その数の百の位と一の位の数を 入れかえてできる数の差は99の倍数になる。
投稿日:2013.03.17

<関連動画>

連立方程式 解がない 2通りの解説 滝高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式が解をもたないときa=?
$
\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=4 \cdots①\\
ax+y=3 \cdots②\\
\end{array}
\right.
\end{eqnarray}
$

滝高等学校
この動画を見る 

図形:香川県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)#香川県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 香川県の高校

図のような正方形$ABCD$がある。
辺$CD$上に、点$E$($2$点$C, D$と異なる)。
→点$B$と点$E$を結ぶ。
線分$BE$上に、$AB=AF$となる点$F$
(点$B$と異なる)。
→点$A$と点$F$を結ぶ。
$\angle DAF=40°$であるとき、
$\angle EBC$の大きさは何度か求めよ。
※図は動画内参照
この動画を見る 

【数学】中2-16 連立方程式③ 加減法の応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【裏技】二等分線の図形を一撃で解く

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
二等分線の図形を一撃で解く裏技紹介動画です
この動画を見る 

【高校受験対策】数学-死守23

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#立体図形#立体切断#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-5-(-9)$を計算せよ.

②$- 2 ^ 2 \times 3$を計算せよ.

③$xy ^ 2 \times 6y \div 3xy$を計算せよ.

④$(x - 7)(x - 4) + 8x$を計算せよ.

⑤1次方程式$x + 4 = 5(2x - 1)$を解け.

⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.

⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.

⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.

⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.

⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.

ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.

⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.

図は動画内参照
この動画を見る 
PAGE TOP