【高校受験対策】数学-死守37 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守37

問題文全文(内容文):
高校受験対策・死守37

①$11+2 \times(-7)$を計算せよ。

➁$2(3a+4b)-(2a-b)$を計算せよ。

③$\frac{12}{\sqrt{6}}-\sqrt{96}$を計算せよ。

④一次方程式$2x+8=5x-13$を解け。

⑤二次方程式$x(x+6)=3x+10$を解け。

⑥1から6までの目が出る2つのさいころA、Bを同時に投げるとき、出る目の数の積が9の倍数になる確率を求めよ。
ただし、さいころはどの目が出ることも同様に確からしい とする。

⑦右の三角柱ABCDEFにおいて、辺DEとねじれの位置にある辺をすべて答えよ。

⑧全校生徒560人の中から無作為に抽出した40人に対してアンケートを行ったところ、
地域でボランティア活動に参加したことがある生徒は25人であった。
全校生徒のうち、地域でボランティア活動に参加したことがある生徒の人数はおよそ何人と推定できるか答えよ。

⑨次のア~エの数量の関係のうち、$y$が$x$の2乗に比例するものを1つ選び、記号で答えよ。
またその関係について、$y$を$x$の式で表せ。

ア 半径が$x$cmの円の周の長さを$y$cmとする。
イ 周の長さが8cmの長方形の縦の長さを$x$cm、横の長さを$y$cmとする。
ウ 面積が12㎠の三角形の辺のさを$x$cm、高さを$y$cmとする。
エ 底面の1辺の長さが$x$cm、高さが6cmの正四角すいの体積を$y cm^3$とする
単元: #数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守37

①$11+2 \times(-7)$を計算せよ。

➁$2(3a+4b)-(2a-b)$を計算せよ。

③$\frac{12}{\sqrt{6}}-\sqrt{96}$を計算せよ。

④一次方程式$2x+8=5x-13$を解け。

⑤二次方程式$x(x+6)=3x+10$を解け。

⑥1から6までの目が出る2つのさいころA、Bを同時に投げるとき、出る目の数の積が9の倍数になる確率を求めよ。
ただし、さいころはどの目が出ることも同様に確からしい とする。

⑦右の三角柱ABCDEFにおいて、辺DEとねじれの位置にある辺をすべて答えよ。

⑧全校生徒560人の中から無作為に抽出した40人に対してアンケートを行ったところ、
地域でボランティア活動に参加したことがある生徒は25人であった。
全校生徒のうち、地域でボランティア活動に参加したことがある生徒の人数はおよそ何人と推定できるか答えよ。

⑨次のア~エの数量の関係のうち、$y$が$x$の2乗に比例するものを1つ選び、記号で答えよ。
またその関係について、$y$を$x$の式で表せ。

ア 半径が$x$cmの円の周の長さを$y$cmとする。
イ 周の長さが8cmの長方形の縦の長さを$x$cm、横の長さを$y$cmとする。
ウ 面積が12㎠の三角形の辺のさを$x$cm、高さを$y$cmとする。
エ 底面の1辺の長さが$x$cm、高さが6cmの正四角すいの体積を$y cm^3$とする
投稿日:2019.09.04

<関連動画>

2次の連立方程式 明大明治2023

アイキャッチ画像
単元: #数学(中学生)#連立方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 -4y^2 -10x +25 = 0 \\
x^2 + x -6 -2xy + 4y = 0
\end{array}
\right.
\end{eqnarray}

(x,y)の組をすべて求めよ。
2023明治大学付属明治高等学校(改)
この動画を見る 

指数不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2-1)^{\frac{x}{x-4}}\gt (3-\sqrt8)^{\frac{1}{2x(x-4)}}$
この動画を見る 

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 媒介変数表示\\
x=\frac{2}{\cos\theta}, y=3\tan\theta+1\\
で表される図形Cを考える。\\
\\
(1)Cは頂点(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })、焦点(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })、\\
漸近線y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }をもつ双曲線である。\\
(2)双曲線Cと直線x=4は、2点(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})\\
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

正方形と比

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a:b:c=?
*図は動画内参照
大阪教育大学附属高等学校平野校舎(改)
この動画を見る 

【良問】面倒な作業は省略しろ!一橋大学の整数問題【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ 3q^3-p^2q-pq^2+3q^3=2013$を満たす正の整数$ p,q$をすべて求めよ。

一橋大過去問
この動画を見る 
PAGE TOP