福田の数学〜対数関数の最大値2通りの解を紹介〜慶應義塾大学2023年商学部第1問(1)〜対数関数の最大値 - 質問解決D.B.(データベース)

福田の数学〜対数関数の最大値2通りの解を紹介〜慶應義塾大学2023年商学部第1問(1)〜対数関数の最大値

問題文全文(内容文):
(1)2つの正の実数x,yについて、$xy^2=10$のとき、$\log_{ 10 } x$,$\log_{ 10 } y$の最大値は$\dfrac{\fbox{ア}}{{\fbox{イ}}}$である。

2023慶應義塾大学商学部過去問

単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)2つの正の実数x,yについて、$xy^2=10$のとき、$\log_{ 10 } x$,$\log_{ 10 } y$の最大値は$\dfrac{\fbox{ア}}{{\fbox{イ}}}$である。

2023慶應義塾大学商学部過去問

投稿日:2023.11.24

<関連動画>

福田の数学〜慶應義塾大学2021年商学部第1問(1)〜対数の基本性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)正の実数x,\ yについて、xとyの相加平均を5とする。また、4を底とする\\
x,\ yの対数をそれぞれX,\ Yとしたとき、XとYの相加平均は1であるとする。\\
このとき、x \lt yとすると、x=\boxed{\ \ ア\ \ }, y=\boxed{\ \ イ\ \ } である。
\end{eqnarray}

2021慶應義塾大学商学部過去問
この動画を見る 

高校数学:数学検定準1級1次:問題1,2 :対数不等式、2直線間の距離

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#指数関数と対数関数#点と直線#対数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の不等式を解きなさい。
$\log_{ \frac{1}{2}} 2x >\log_{ \frac{1}{2}} x^2-2x+3$

問題2
xy平面上の2直線$3x+4y-20=0$と$3x+4y+50=0$の間の距離を求めなさい。


この動画を見る 

福田の数学〜(2)から先行きが怪しくなってくる〜慶應義塾大学2023年経済学部第4問〜対数関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
x,yを正の実数とし、$2\log_{ 2 } x+\log_{ 2 } y$とする。また、kを正の実数とする。
(1)x,yがx+y=kまたは、kx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_1$及びその時のxの値を、Kを用いて表せ。
(2)x,yはx+y=KまたはKx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_2$が(1)の$z_1$と一致するための必要十分条件を求めよ。
(3)nを自然数とし、$K=2^\frac{n}{5}$とする。(2)の$z_2$について、$\dfrac{3}{2} \lt z_2 \lt \dfrac{7}{2}$を満たす。
nの最大値および最小値を求めよ。必要があれば$1.58 \lt \log_{2}3 \lt 1.59$を用いよ。

2023慶應義塾大学経済学部過去問
この動画を見る 

大阪大 対数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数
$0 \lt a \lt 1$
$log_{2}6=m+\displaystyle \frac{1}{n+a}$

(1)
$m,n$を求めよ

(2)
$a \gt \displaystyle \frac{2}{3}$を示せ

出典:2006年大阪大学 過去問
この動画を見る 

見掛け倒しの方程式 ちょっと気をつけてね

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$(\sqrt2)^{\log_2(x^2+x-6)^2}=-2x+4$
この動画を見る 
PAGE TOP