問題文全文(内容文):
等式$ \dfrac{1}{x}-\dfrac{2}{y}=3 $が成り立つとき
$ \dfrac{6x-3y}{3xy-2x+y}$の値を求めなさい.
※$ x,y $はともに$ 0 $でない.
明大中野高校過去問
等式$ \dfrac{1}{x}-\dfrac{2}{y}=3 $が成り立つとき
$ \dfrac{6x-3y}{3xy-2x+y}$の値を求めなさい.
※$ x,y $はともに$ 0 $でない.
明大中野高校過去問
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
等式$ \dfrac{1}{x}-\dfrac{2}{y}=3 $が成り立つとき
$ \dfrac{6x-3y}{3xy-2x+y}$の値を求めなさい.
※$ x,y $はともに$ 0 $でない.
明大中野高校過去問
等式$ \dfrac{1}{x}-\dfrac{2}{y}=3 $が成り立つとき
$ \dfrac{6x-3y}{3xy-2x+y}$の値を求めなさい.
※$ x,y $はともに$ 0 $でない.
明大中野高校過去問
投稿日:2023.08.21