【分かっていても手間はかかる】連立方程式:東大寺学園高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【分かっていても手間はかかる】連立方程式:東大寺学園高等学校~全国入試問題解法

問題文全文(内容文):
x,yについての連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{3x+4y}-\dfrac{4}{4x-3y}=10 \\
\dfrac{4}{3x+4y}+\dfrac{3}{4x-3y}=5
\end{array}
\right.
\end{eqnarray}$
を解け.

東大寺学園高校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
x,yについての連立方程式
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{3x+4y}-\dfrac{4}{4x-3y}=10 \\
\dfrac{4}{3x+4y}+\dfrac{3}{4x-3y}=5
\end{array}
\right.
\end{eqnarray}$
を解け.

東大寺学園高校過去問
投稿日:2023.03.07

<関連動画>

【高校受験対策/数学】死守77

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守77

①$-3+(-2)$を計算しなさい。

➁$8-4÷(-2)^2$を計算しなさい。

③$5×(-5a)$を計算しなさい。

④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。

⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。

⑥$(2a-b)^2$を展開しなさい。

⑦$x^2-x-42$を因数分解しなさい。

⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。

⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。

⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。

ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。
この動画を見る 

【コツをつかめば簡単に解ける!】2元2次連立方程式③:中学からの連立方程式~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
xy+x+2y=6 \\
2xy+x-y=5
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る 

【何を問われているか理解しているか?】計算:鎌倉学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の計算をしなさい.
${{2^3-(-2)^3}}\times{-2^5+(-2)^5}$

鎌倉学園高校過去問
この動画を見る 

【中学数学】1次関数:関数決定マスターへの道 12発目! 変域編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
xの変域が$-2≦x≦4$のとき、yの変域が$-9≦y≦3$なる1次関数を求めよ。
この動画を見る 

【高校受験対策】数学-関数20

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,直線$\ell$は関数$y=-\dfrac{3}{2}x+12$のグラフで,
点$A$は直線$\ell$と$x$軸との交点,
点$B$は直線上の点で$x$座標は$6$である.
このとき,次の各問いに答えなさい.

①関数$Y=-\dfrac{3}{2}x+12$について,
$y$の増加量が$12$のときの$x$の増加量を求めなさい.

②直線$\ell$上の点で,
$y$座標の値が$x$座標の値の$2$倍となる座標を求めなさい.

③点$B$を通り傾きが正の直線と$y$軸,
$x$軸との交点をそれぞれ$C,D$とする.
$△OCD$の面積と$△ABD$の面積が等しくなるとき,
点$C$の座標を求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP