【数学】数学オリンピックの組み合わせ論の問題、見方を教えます! - 質問解決D.B.(データベース)

【数学】数学オリンピックの組み合わせ論の問題、見方を教えます!

問題文全文(内容文):
1998×2002マスのマス目があり、黒と白の市松模様に塗られている。マス目に0か1を書き加えたところ、各行・各列に1が書かれた個数は奇数個であった。このとき白マスの1は偶数個あることを示せ。
チャプター:

00:00問題
00:15問題の説明・考え方について
01:19解答

単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 理数個別チャンネル
問題文全文(内容文):
1998×2002マスのマス目があり、黒と白の市松模様に塗られている。マス目に0か1を書き加えたところ、各行・各列に1が書かれた個数は奇数個であった。このとき白マスの1は偶数個あることを示せ。
投稿日:2022.04.08

<関連動画>

数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割った余りを求めよ.
この動画を見る 

モスクワ数学オリンピック 整数

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは自然数とするとき,
$1!+2!+3!+・・・・・・+x!=y^2$を求めよ.

モスクワ数学オリンピック過去問
この動画を見る 

数学ゴールデン#2【漫画】で紹介された数オリの問題の解答がなかったから作成してみた。

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 10+\sqrt{ 1 } }+\sqrt{ 10+\sqrt{ 2 } }+・・・+\sqrt{ 10+\sqrt{ 99 } }}{\sqrt{ 10-\sqrt{ 1 } }+\sqrt{ 10-\sqrt{ 2 } }+・・・+\sqrt{ 10-\sqrt{ 99 } }}$を計算せよ。

出典:数学ゴールデン 数学オリンピック
この動画を見る 

福田のおもしろ数学050〜数学オリンピックの問題〜2変数関数の最小

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
実数a,bが$a+b=17$を満たすとき$2^a+4^b$の最小値を求めよ

数学オリンピック過去問
この動画を見る 

練習問題35 数学オリンピックの問題 複素数を利用して証明してみた。

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学オリンピック#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\cos\dfrac{\pi}{7}-\cos\dfrac{2}{7}\pi+\cos\dfrac{3}{7}\pi=\dfrac{1}{2}$
を示せ.
この動画を見る 
PAGE TOP