【高校数学】対数関数1.5~例題・基礎~【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】対数関数1.5~例題・基礎~【数学Ⅱ】

問題文全文(内容文):
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。


次の方程式、不等式を解け。
(2)$\log_2 x=3$

(3)$\log_{0.5} x≧2$
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。


次の方程式、不等式を解け。
(2)$\log_2 x=3$

(3)$\log_{0.5} x≧2$
投稿日:2018.12.22

<関連動画>

【京大解答速報】2019年数学(文系)大問1の解説~シノハラ京大塾【篠原好】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#整式の除法・分数式・二項定理#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【京大解答速報】「2019年数学(文系)大問1」について解説しています。
この動画を見る 

浜松医大 対数の基本 数3不要

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)2進法で30桁の自然数nを10進法で表すと何桁か,
$\log_{10}=0.3010$

(2)自然数nを2進法で表すと$a_n$桁となる.
$\displaystyle \lim_{ n \to \(x) } \dfrac{\log_{10}n}{a_n}$を求めよ.

浜松医大過去問
この動画を見る 

#慶應義塾大学2024#対数_65#Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$ x\gt 1,y \gt 1,z \gt 1$
$\log_x y +\log_y x+\log_y z+4\log_z y \leqq 6$
$4xz+3x-7y-5z=-5$
を満たす$x,y,z$の値を求めよ.

2024慶應義塾大学環境情報学部過去問題
この動画を見る 

東大 不等式 たくみさん4度目の登場 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
'09東京大学過去問題
実数$x,-1<x<1,x \neq 0$
(1)示せ
$(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}} $
(2)示せ
$0.9999^{101} < 0.99 < 0.9999^{100} $
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^{3^{4}}$ VS $ 4^{4^{3}}$
どちらが大きいか求めよ.
*$ 3^5=243,2^8=256$
$ ell= \displaystyle \lim_{n \to \infty} \left(1+\dfrac{1}{n}\right) \lt 3 $
この動画を見る 
PAGE TOP