【解法はいくつ見つかりましたか】因数分解:成蹊高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【解法はいくつ見つかりましたか】因数分解:成蹊高等学校~全国入試問題解法

問題文全文(内容文):
$ a^2+b^2-2(ab+bc-ca)$を因数分解せよ.

成蹊高校過去問
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a^2+b^2-2(ab+bc-ca)$を因数分解せよ.

成蹊高校過去問
投稿日:2023.05.18

<関連動画>

【数学】中3-13 式の計算の利用③ 数字の証明編

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
連続する2つの偶数の平方の差は、
4の倍数になることを証明しよう!!
連続する2つの偶数を、整数$n$を使って
①____ ,②____とする。

③____ー④____
=⑤__________(途中式)
⑧____は整数なので、連続する2つの 偶数の平方の差は4の倍数になる。

◎3つの連続した整数で、一番大きい数と 一番小さい数の積に1を足すと、真ん中の数の2乗になることを証明しよう!!
3つの連続した整数を、整数$n$を使って、
$n$,⑨____,⑩____とする。
⑪____+⑫___
=⑬_____=⑭_____
よって、3つの連続した整数で、一番大きい数と 一番小さい数の積に1を足すと、真ん中の数の 2乗になる。
この動画を見る 

√2✖️整数=整数??

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 2(a+b+1) = a-b-5$(a,bは整数)
a=? b=?

巣鴨高等学校
この動画を見る 

解の公式使ってはダメです。ダメなものはダメです。開成高校(改)

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
解の公式を用いずに解け
ただし$b^2-4c>0$とする
$x^2+bx+c=0$

開成高等学校
この動画を見る 

2021入試予想問題~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2021入試予想問題~全国入試問題解法

次の入試問題を解け。
$2021 = 43 × 47$

①$2025=45^2$であることを
利用して $2021$の約数を求めよ。

②$2025=45^2$であることを
利用して $2021$の約数を求めよ。

③以下の式を計算せよ
$2025^2+2020 \times 2021-4041 \times 2025$

④$2001+2002+2003+....+2021$
を計算せよ。
⑤$a,ℓ$:自然数、$a$を$ℓ$で割った余り$R_{ℓ}(a)$
(1)$R_{40} (2021), R_{40} (2021^2)$を求めよ。
(2)$R_{40} (2021^{2021})$を求めよ。

⑥ある整数$x$を$12$で割ると、
余りろとなりました。
このとき、$x$を$2021$倍した
$2021x$を$12$で割った余りを求めよ。

⑦ $3^{2021}$の一の位の数を求めなさい。
この動画を見る 

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP