文字式を解くにはパターンがある~全国入試問題解法 #shorts, #数学, #高校入試, #頭の体操 - 質問解決D.B.(データベース)

文字式を解くにはパターンがある~全国入試問題解法 #shorts, #数学, #高校入試, #頭の体操

問題文全文(内容文):
$ x+y=-1,xy=-\dfrac{3}{5}$のとき,
$ x^2-3xy+y^2$の値を求めなさい.

法政大第二高校過去問
単元: #数学(中学生)#中1数学#文字と式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x+y=-1,xy=-\dfrac{3}{5}$のとき,
$ x^2-3xy+y^2$の値を求めなさい.

法政大第二高校過去問
投稿日:2024.04.14

<関連動画>

【中学数学】四則演算の総復習【中1夏期講習①】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle (1)\,
(-2)^3 \times 7 - (-3)^2 \times 5
$
$\displaystyle (2)\,
(5 - 17) \div (11 - 5) - \{2 \times (-3) - 3\}
$
$\displaystyle (3)\,
(3^2 - 7) \times 6 + \{(2 - 5)^2 + 11\}
$
$\displaystyle (4)\,
(-\frac{3}{2}) \times (- \frac{4}{9}) + \frac{2}{3} \times \frac{7}{4}
$
$\displaystyle (5)\,
(\frac{1}{2} + \frac{1}{3}) \div (-\frac{5}{12}) + (\frac{2}{3} + \frac{5}{6}) \times \frac{14}{15}
$
$\displaystyle (6)\,
\{(\frac{3}{2})^3 + 1 \} \times \frac{4}{5} + ( \frac{1}{2} + \frac{1}{4}) \times \frac{2}{5}
$
$\displaystyle (7)\,
-6 \times \{14 \div (5 - 7) \}
$
$\displaystyle (8)\,
8 - (-2)^2 \times (-5) + (-3)
$
この動画を見る 

【式の形から見えるものもある!】一次方程式:愛知県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
一次方程式$5x-7=9(x-3)$を解け.

東京都高校過去問
この動画を見る 

【中1 数学】中1-65 直線と角② ~問題編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎台形ABCDについて!

①平行な線分を記号を使って表すと?

②垂直な線分を記号を使って表すと?

③点Dと線分BCとの距離は何㎝?
※図は動画内参照

◎次の三角形を書こう!

④$AB=4cm,BC=6cm,CA=5cm$

⑤$BC=7cm,\angle ABC=40°,\angle ACB=60°$
この動画を見る 

【中学数学】比例と反比例:関数決定マスターへの道 2発目! 反比例編

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 理数個別チャンネル
問題文全文(内容文):
xはyに反比例し、x=3のときy=9となる。yをxの式で表しなさい。
この動画を見る 

【高校受験対策/数学】図形38

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形38

Q
図1のように、円すい状のライトが床からの高さ300cmの天井からひもでつり下げられている。
図1の点線は円すいの母線を延長した直線を示しており、ライトから出た光はこの点線の内側を進んで床を円形に照りしているものとする。
図2、図3は天井からつり下げたライトを示したもので、図2のライトAは底面の直径が8cm、高さが10cm、図3のライトBは底面の直径が6cm、高さが10cmの円すいの側面を用いた形状となっている。


ライトAをつり下げるひもの長さが100cmのとき、このライトが床を照らしてできる円の直径を求めなさい。


ライトをつり下げるひもの長さが$x$cmのときにこのライトが床を照らしてできる円の直径を$y$ cmとする。
$x$の変域を$50 \leqq x \leqq 180$とするとき、$y$を$x$の式で表しなさい。
また、$y$の変域を求めなさい。


ライトAとライトBをそれぞれ天井からひもでつり下げて、ひもの長さを変えながら2つのライトが照らしてできる円の面積を調べた。
ライトをつり下げるひもの長さを$x$ cm、ライトBをつり下げるひもの長さを$\frac{x}{2}$ cmとしたとき
2つのライトを照らしてできる円の面積が等しくなるような$x$の値を求めなさい。
この動画を見る 
PAGE TOP