【旧センター試験化学】2020追試第4問 問2アルコールの酸化に関する量的関係の問題 - 質問解決D.B.(データベース)

【旧センター試験化学】2020追試第4問 問2アルコールの酸化に関する量的関係の問題

問題文全文(内容文):
問題文
0.10molのニクロム酸カリウムと反応させる
プロパノールの質量は?
単元: #センター試験#共通テスト
指導講師: ぺんぎん高校化学問題集
問題文全文(内容文):
問題文
0.10molのニクロム酸カリウムと反応させる
プロパノールの質量は?
投稿日:2025.07.16

<関連動画>

センター試験 数学1A満点のもっちゃんがセンター数学やるよ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-5x+3=0$の2解を$\alpha, \beta$
(1)$\alpha^3,\beta^3$を解にもつ2次方程式
  $x^2+px+q=0$ $p,q$の値



(2)$|\alpha-\beta|=m+d$
$(m$整数,$0 \leqq d \lt 1)$
$n \leqq 10d \lt n+1$ 整数$n$


過去問:センター試験
この動画を見る 

2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第5問〜確率分布と統計的な推測

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
ある市の市立図書館の利用状況について調査を行った。

(1)ある高校の生徒720人全員を対象に、ある1週間に市立図書館で借りた本の
冊数について調査を行った。
その結果、1冊も借りなかった生徒が612人、1冊借りた生徒が54人、
2冊借りた生徒が36人であり、3冊借りた生徒が18人であった。
4冊以上借りた生徒はいなかった。

この高校の生徒から1人を無作為に選んだ時、その生徒が借りた本の冊数
を表す確率変数を$X$とする。

このとき、$X$の平均(期待値)は$E(X)=\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、$X^2$の平均は
$E(X^2)=\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。よって、$X$の標準偏差は
$\sigma(X)=\displaystyle \frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}\displaystyle$ である。

(2)市内の高校生全員を母集団とし、ある1週間に市立図書館を利用した生徒の
割合(母比率)を$p$とする。この母集団から600人を無作為に選んだ時、その
1週間に市立図書館を利用した生徒の数を確率変数$Y$で表す。

$p=0.4$のとき、$Y$の平均は$E(Y)=\boxed{\ \ キクケ\ \ }$、標準偏差は$\sigma(Y)=\boxed{\ \ コサ\ \ }$
になる。ここで、$Z=\displaystyle \frac{Y-\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサ\ \ }}\displaystyle$ とおくと、標本数600は
十分に大きいので、$Z$は近似的に標準正規分布に従う。このことを利用して、
$Y$が215以下となる確率を求めると、その確率は$0.\boxed{\ \ シス\ \ }$になる。

また、$p=0.2$のとき、$Y$の平均は$\boxed{\ \ キクケ\ \ }$の$\displaystyle \frac{1}{\boxed{\ \ セ\ \ }}$倍、
標準偏差は$\boxed{\ \ コサ\ \ }$の$\displaystyle \frac{\sqrt{\boxed{\ \ ソ\ \ }}}{3}$倍である。

(3)市立図書館に利用者登録のある高校生全員を母集団とする。1回あたりの
利用時間(分)を表す確率変数を$W$とし、$W$は母平均$m$,母標準偏差30の分布
に従うとする。この母集団から大きさ$n$の標本$W_1,W_2,\ldots,W_n$を無作為に
抽出した。
利用時間が60分をどの程度超えるかについて調査するために
$U_1=W_1-60, U_2=W_2-60, \ldots, U_n=W_n-60$
とおくと、確率変数$U_1,U_2, \cdots, U_n$の平均と標準偏差はそれぞれ
$E(U_1)=E(U_2)=\cdots=E(U_n)$$=m-\boxed{\ \ タチ\ \ }$
$\sigma(U_1)=\sigma(U_2)=\cdots=\sigma(U_n)$$=\boxed{\ \ ツテ\ \ }$
である。

ここで、$t=m-60$として、$t$に対する信頼度95%の信頼区間を求めよう。
この母集団から無作為抽出された100人の生徒に対して$U_1,U_2, \cdots,U_m$の
値を調べたところ、その標本平均の値が50分であった。標本数は十分大きい
ことを利用して、この信頼区間を求めると
$\boxed{\ \ トナ\ \ }.\boxed{\ \ ニ\ \ } \leqq t \leqq \boxed{\ \ ヌネ\ \ }.\boxed{\ \ ノ\ \ }$
になる。

2020センター試験過去問
この動画を見る 

ベストを出すための「あと20日」のメンタル調整術~センター9割の受験勉強法【篠原好】

アイキャッチ画像
単元: #センター試験・共通テスト関連#センター試験#その他#勉強法#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
センター試験まであと20日!
「ベストを出すためのメンタル調整術」についてお話しています。
この動画を見る 

【英語】センター試験 2017年 第2問A(1)~(5)

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#センター試験#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
前置詞や形容詞を補語にする方法,比較の強調,最上級の強調,分詞構文に関して解説していきます.
この動画を見る 

【数学I】センター2018 第3問 確率 !!解説!!

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学I】センター2018 第3問 確率 解説動画です
この動画を見る 
PAGE TOP