福田の数学〜中央大学2024経済学部第2問〜2つの国のGDPの比較と常用対数 - 質問解決D.B.(データベース)

福田の数学〜中央大学2024経済学部第2問〜2つの国のGDPの比較と常用対数

問題文全文(内容文):
2.
今年A国のGDP(国内総生産)はB国のGDPの$2$倍である。いま、A国の GDPは1年ごとに$4$%減少し、B国のGDPは$8$%増加すると仮定するとき、以下の問いに答えよ。ただし、 $\log_{10}2 = 0.301$, $\log_{10}3 = 0.4771$ とする。

(1) 今年のA国のGDPを$x$とするとき、n年後のA国とB国のGDPをそれぞれ、$x$と$n$を用いて表せ。

(2) B国のGDPが始めてA国のGDPより大きくなるのは今年から何年後か。答は整数で求めよ。
単元: #数Ⅱ#指数関数と対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2.
今年A国のGDP(国内総生産)はB国のGDPの$2$倍である。いま、A国の GDPは1年ごとに$4$%減少し、B国のGDPは$8$%増加すると仮定するとき、以下の問いに答えよ。ただし、 $\log_{10}2 = 0.301$, $\log_{10}3 = 0.4771$ とする。

(1) 今年のA国のGDPを$x$とするとき、n年後のA国とB国のGDPをそれぞれ、$x$と$n$を用いて表せ。

(2) B国のGDPが始めてA国のGDPより大きくなるのは今年から何年後か。答は整数で求めよ。
投稿日:2024.08.12

<関連動画>

高専数学 微積II #64 偏微分の計算

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$z=x^y y^x$のとき,
$xz_x+yz_y=z(x+y)+z\log z$が
成り立つことを示せ.
この動画を見る 

【高校数学】漸化式で特性方程式を使う理由 3-18.5【数学B】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【高校数学】漸化式で特性方程式を使う理由を解説していきます。
この動画を見る 

#関西大学2024#不定積分_40

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} x^2\cos \ 2x\ dx$
を解け.

2022関西大学過去問題
この動画を見る 

【ゼロからわかる】整式の割り算②(高校数学Ⅱ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の問いに答えよ。
(1)
$x^2-6x+3$で割ると、商が$2x-3,$余りが$3x$である整数$A$を求めよ。

(2)
$x^3+3x^2+2x+1$を$B$で割ると、商が$x+1,$余りが$x+2$になる。
整数$B$を求めよ。
この動画を見る 

上智大 住宅ローンは月々いくら?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
年利$5$%で毎年1万円積立預金20万円を超えるのは何年後か.
$\log_{10}2=0.3010$
$\log_{10}3=0.4771$
$\log_{10}7=0.8450$

2018上智大過去問
この動画を見る 
PAGE TOP