【旧センター試験化学】2020追試 第4問 問3 アセチレンの付加反応 - 質問解決D.B.(データベース)

【旧センター試験化学】2020追試 第4問 問3 アセチレンの付加反応

問題文全文(内容文):
問題文
アセチレン分子に付加させるとC=Cをもたない化合物ができるものはどれ
H2,H2O,HCl,CH3COOH
単元: #共通テスト
指導講師: ぺんぎん高校化学問題集
問題文全文(内容文):
問題文
アセチレン分子に付加させるとC=Cをもたない化合物ができるものはどれ
H2,H2O,HCl,CH3COOH
投稿日:2025.07.16

<関連動画>

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[1]。2次方程式、2次関数、必要十分条件の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第2問\ [1] p,qを実数とする。
花子さんと太郎さんは、次の二つの2次方程式について考えている。
$x^2+px+q=0 \ldots①$
$x^2+qx+p=0 \ldots②$
①または②を満たす実数xの個数をnとおく。

(1)$p=4,q=-4$のとき、$n=\boxed{ア}$である。
また、$p=1,q=-2$のとき、$n=\boxed{イ}$である。
(2)$p=-6$のとき、$n=3$になる場合を考える。

花子:例えば、①と②を共に満たす実数xがあるときは$n=3$に
なりそうだね。
太郎:それを$\alpha$としたら、$\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0$が
成り立つよ。
花子:なるほど。それならば、$\alpha^2$を消去すれば、$\alpha$の値が求められそうだね。
太郎:確かに$\alpha$の値が求まるけど、実際に$n=3$となっているか
どうかの確認が必要だね。
花子:これ以外にも$n=3$となる場合がありそうだね。

$n=3$となるqの値は
$q=\boxed{ウ}, \boxed{エ}$
である。ただし、$\boxed{ウ} \lt \boxed{エ}$とする。

$p=-6$に固定したまま、qの値だけを変化させる。
$y=x^2-6x+q \ldots③$
$y=x^2+qx-6 \ldots④$

(1)この二つのグラフについて、$q=1$のときのグラフを点線で、
qの値を1から増加させたときのグラフを実線でそれぞれ表す。
このとき、③のグラフの移動の様子を示すと$\boxed{オ}$となり、
④のグラフの移動の様子を示すと$\boxed{カ}$となる。

$\boxed{オ}, \boxed{カ}$については、最も適当なものを、次の⓪~⑦
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
なお、x軸とy軸は省略しているが、x軸は右方向、
y軸は上方向がそれぞれ正の方向である。
(※選択肢は動画参照)

(4)$\boxed{ウ} \lt q \lt \boxed{エ}$とする。全体集合Uを実数全体の集合とし、
Uの部分集合A,Bを

$A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}$
$B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}$

とする。Uの部分集合Xに対し、Xの補集合を$\bar{ X }$と表す。このとき、
次のことが成り立つ。

・$x \in A$は、$x \in B$であるための$\boxed{キ}$。
・$x \in B$は、$x \in \bar{ A }$であるための$\boxed{ク}$。

$\boxed{キ}, \boxed{ク}$の解答群(同じものを繰り返し選んでもよい。)
⓪必要条件であるが、十分条件ではない
①十分条件であるが、必要条件ではない
②必要十分条件である
③必要条件でも十分条件でもない

2022共通テスト数学過去問
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮裏技集 紹介動画です(指数・対数、微分積分、数列、ベクトル)
この動画を見る 

【篠原共通塾】2022年度「数学2B」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2022年度共通テスト「数学2B」の解説動画です。
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第5問ベクトル〜三角錐をベクトルで考える

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師: 福田次郎
問題文全文(内容文):
第5問
三角錐PABCにおいて、辺BCの中点をMとおく。また、$\angle$PAB=$\angle$PACとし、この角度をθをおく。0°< θ < 90°とする。
(1)$\overrightarrow{AM}$は
$\overrightarrow{AM}$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\overrightarrow{AB}$+$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\overrightarrow{AC}$
と表せる。また
$\frac{\overrightarrow{AP}・\overrightarrow{AB}}{|\overrightarrow{AP}||\overrightarrow{AB}|}$=$\frac{\overrightarrow{AP}・\overrightarrow{AC}}{|\overrightarrow{AP}||\overrightarrow{AC}|}$=$\boxed{\boxed{\ \ オ\ \ }}$  ...①
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\sin \theta$ ①$\cos \theta$ ②$\tan \theta$ 
③$\frac{1}{\sin \theta}$ ④$\frac{1}{\cos \theta}$ ⑤$\frac{1}{\tan \theta}$ 
⑥$\sin\angle$BPC ⑦$\cos\angle$BPC ⑧$\tan\angle$BPC
(2)θ=45°とし、さらに
$|\overrightarrow{AP}|$=3√2, $|\overrightarrow{AB}|$=$|\overrightarrow{PB}|$=3, $|\overrightarrow{AC}|$=$|\overrightarrow{PC}|$=3
が成り立つ場合を考える。このとき
$\overrightarrow{AP}・\overrightarrow{AB}$=$\overrightarrow{AP}・\overrightarrow{AC}$=$\boxed{\ \ カ\ \ }$
である。さらに、直線AM上の点Dが$\angle$APD=90°を満たしているとする。このとき、$\overrightarrow{AD}$=$\boxed{\ \ キ\ \ }\overrightarrow{AM}$である。
(3)
$\overrightarrow{AQ}$=$\boxed{\ \ キ\ \ }\overrightarrow{AM}$
で定まる点をQとおく。$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直である三角錐PABCはどのようなものかについて考えよう。例えば(2)の場合では、点Qは点Dと一致し、$\overrightarrow{PA}$と$\overrightarrow{PQ}$は垂直である。
(i)$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であるとき、$\overrightarrow{PQ}$を$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AP}$を用いて表して考えると、$\boxed{\boxed{\ \ ク\ \ }}$が成り立つ。さらに①に注意すると、$\boxed{\boxed{\ \ ク\ \ }}$から$\boxed{\boxed{\ \ ケ\ \ }}$が成り立つことがわかる。
したがって、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であれば、$\boxed{\boxed{\ \ ケ\ \ }}$が成り立つ。逆に、$\boxed{\boxed{\ \ ケ\ \ }}$が成り立てば、$\overrightarrow{PA}$と$\overrightarrow{PQ}$は垂直である。
$\boxed{\boxed{\ \ ク\ \ }}$の解答群
⓪$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$\overrightarrow{AP}・\overrightarrow{AP}$
①$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$-\overrightarrow{AP}・\overrightarrow{AP}$
②$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$\overrightarrow{AB}・\overrightarrow{AC}$
③$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$-\overrightarrow{AB}・\overrightarrow{AC}$
④$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=0
⑤$\overrightarrow{AP}・\overrightarrow{AB}$-$\overrightarrow{AP}・\overrightarrow{AC}$=0
$\boxed{\boxed{\ \ ケ\ \ }}$の解答群
⓪$|\overrightarrow{AB}|$+$|\overrightarrow{AC}|$=$\sqrt 2|\overrightarrow{BC}|$
①$|\overrightarrow{AB}|$+$|\overrightarrow{AC}|$=$2|\overrightarrow{BC}|$
②$|\overrightarrow{AB}|\sin\theta$+$|\overrightarrow{AC}|\sin\theta$=$|\overrightarrow{AP}|$
③$|\overrightarrow{AB}|\cos\theta$+$|\overrightarrow{AC}|\cos\theta$=$|\overrightarrow{AP}|$
④$|\overrightarrow{AB}|\sin\theta$=$|\overrightarrow{AC}|\sin\theta$=$2|\overrightarrow{AP}|$
⑤$|\overrightarrow{AB}|\cos\theta$=$|\overrightarrow{AC}|\cos\theta$=$2|\overrightarrow{AP}|$
(ii)kを正の実数とし
$k\overrightarrow{AP}・\overrightarrow{AB}$=$\overrightarrow{AP}・\overrightarrow{AC}$
が成り立つとする。このとき、$\boxed{\boxed{\ \ コ\ \ }}$が成り立つ。
また、点Bから直線APに下ろした垂線と直線APとの交点をB'とし、同様に点Cから直線APに下ろした垂線と直線APとの交点をC'とする。
このとき、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であることは、$\boxed{\boxed{\ \ サ\ \ }}$であることと同値である。特にk=1のとき、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であることは、$\boxed{\boxed{\ \ シ\ \ }}$であることと同値である。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
⓪$k|\overrightarrow{AB}|$=$|\overrightarrow{AC}|$ ①$|\overrightarrow{AB}|$=$k|\overrightarrow{AC}|$ 
②$k|\overrightarrow{AP}|$=$\sqrt 2|\overrightarrow{AB}|$ ③$k|\overrightarrow{AP}|$=$\sqrt 2|\overrightarrow{AC}|$
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪B'とC'がともに線分APの中点
①B'とC'が線分APをそれぞれ(k+1):1と1:(k+1)に内分する点
②B'とC'が線分APをそれぞれ1:(k+1)と(k+1):1に内分する点
③B'とC'が線分APをそれぞれk:1と1:kに内分する点
④B'とC'が線分APをそれぞれ1:kとk:1に内分する点
⑤B'とC'がともに線分APをk:1に内分する点
⑥B'とC'がともに線分APを1:kに内分する点
$\boxed{\boxed{\ \ シ\ \ }}$の解答群
⓪$\triangle$PABと$\triangle$PACがともに正三角形
①$\triangle$PABと$\triangle$PACがそれぞれ$\angle$PBA=90°, $\angle$PCA=90°を満たす直角二等辺三角形
②$\triangle$PABと$\triangle$PACがそれぞれBP=BA, CP=CAを満たす二等辺三角形
③$\triangle$PABと$\triangle$PACが合同
④AP=BC

2023共通テスト過去問
この動画を見る 

【難化】共通テスト数学1A講評

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
あきとんとんさんが共通テスト数学ⅠAの講評をします。

傾向を知って、対策に役立てましょう!
この動画を見る 
PAGE TOP