18兵庫県教員採用試験(数学:2番 ベクトル) - 質問解決D.B.(データベース)

18兵庫県教員採用試験(数学:2番 ベクトル)

問題文全文(内容文):
2⃣
G:重心、OA⊥BC
四面体PGBCの体積を求めよ。
*図は動画内参照
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
2⃣
G:重心、OA⊥BC
四面体PGBCの体積を求めよ。
*図は動画内参照
投稿日:2020.07.06

<関連動画>

【数C】ベクトルの基本⑳空間における平面上の点を係数から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 

【高校数学】 数B-37 2点間の距離②

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①2点A(1.2.-3)、B(3.-1.-4)から等距離にあるx軸上の点Pを求めよう。

②A(0.1.-2)、B(2.3.-2)、C(0.3.0)、Dを頂点とする正四面体ABCDの頂点Dの座標を求めよう。
この動画を見る 

福田の数学〜立教大学2023年理学部第2問〜ベクトルの共面条件と共線条件

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<$k$1とする。座標空間内の四面体OABCについて、線分ACの中点をD、線分BCの中点をE、線分DEを1:2に内分する点をPとする。また、
線分OPを$k$:1-$k$に内分する点をQとし、Rを$\overrightarrow{CR}$=$l\overrightarrow{CQ}$を満たす点とする。
$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおいたとき、次の問いに答えよ。
(1)$\overrightarrow{OD}$, $\overrightarrow{OE}$, $\overrightarrow{OP}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$を用いて表せ。
(2)$\overrightarrow{OR}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$, $k$, $l$を用いて表せ。
(3)Rが平面OAB上にあるとき、$l$を$k$を用いて表せ。
(4)線分OAの中点をF、線分OBの中点をGとする。Rが線分FG上にあるときの$k$の値を求めよ。
この動画を見る 

【数B】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
この動画を見る 

【数B】空間ベクトル:球面の方程式!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)球面$x^2+y^2+z^2-4x-6y+2z+5=0$とxy平面の交わりは円になる。この円の中心と半径を求めよう。
(2)中心が点$(-2,4,-2)$で、2つの座標平面に接する球面Sの方程式を求めよう。また、Sと平面x=kの交わりが半径$\sqrt3$の円になるとき、kの値を求めよう。
この動画を見る 
PAGE TOP