18兵庫県教員採用試験(数学:2番 ベクトル) - 質問解決D.B.(データベース)

18兵庫県教員採用試験(数学:2番 ベクトル)

問題文全文(内容文):
2⃣
G:重心、OA⊥BC
四面体PGBCの体積を求めよ。
*図は動画内参照
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
2⃣
G:重心、OA⊥BC
四面体PGBCの体積を求めよ。
*図は動画内参照
投稿日:2020.07.06

<関連動画>

福田の数学〜早稲田大学2022年教育学部第1問(1)〜空間ベクトルと球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)座標空間内に3点A$(2,0,0),\ B(0,4,0),\ C(0,0,8)$をとる。
2つのベクトル$\overrightarrow{ AP }$と$\overrightarrow{ BP }+\overrightarrow{ CP }$の内積が0となるような点$P(x,y,z)$
のうち、$|\overrightarrow{ AP }$|が最大となる点Pの座標を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 

【数C】【空間ベクトル】四面体OABCにおいて、OA=OB、→OC⊥→ABとする。(1) AC=BCであることを証明せよ(2) 三角形ABCの重心をGとするとき、→OG⊥→ABであることを証明せよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、OA=OB、
OC⊥ABとする。
(1) AC=BCであることを証明せよ
(2) 三角形ABCの重心をGとするとき、OG⊥ABであることを証明せよ
この動画を見る 

【数C】空間ベクトル:球面の方程式! 次の条件を満たす球面の方程式を求めよう。(1)直径の両端が2点(1,-4,3) (3,0,1)である。(2)点(1,-2,5)を通り、3つの座標平面に接する。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす球面の方程式を求めよ。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
この動画を見る 

福田の数学〜名古屋大学2024年理系第3問〜空間内の平面上の領域と原点との距離の最小

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間の3点A(3,1,3), B(4,2,2), C(4,0,1)の定める平面を$H$とする。
また、
$\overrightarrow{AP}$=$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ ($s$, $t$は非負の実数)
を満たすすべての点Pからなる領域を$K$とする。
(1)内積$\overrightarrow{AB}・\overrightarrow{AB}$, $\overrightarrow{AC}・\overrightarrow{AC}$, $\overrightarrow{AB}・\overrightarrow{AC}$を求めよ。
(2)原点O(0,0,0)から平面$H$に下ろした垂線の足をQとする。$\overrightarrow{AQ}$を$\overrightarrow{AB}$と$\overrightarrow{AC}$で表せ。
(3)領域$K$上の点Pに対して、線分QP上の点で$\overrightarrow{AR}$=$r\overrightarrow{AC}$ ($r$は非負の実数)を満たす点Rが存在することを示せ。
(4)領域$K$において原点Oからの距離が最小となる点Sの座標を求めよ。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(4)〜2つのベクトルに垂直な単位ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)2つのベクトル$\overrightarrow{ a }=(4,\ -2,\ 3),\ \overrightarrow{ b }=(-4,\ 5,\ -3)$の両方に垂直な
単位ベクトルを全て求めよ。

2021中央大経済学部過去問
この動画を見る 
PAGE TOP