【限られた条件から面積を求める!】図形:早稲田大学系属早稲田実業学校高等部~全国入試問題解法 - 質問解決D.B.(データベース)

【限られた条件から面積を求める!】図形:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

問題文全文(内容文):
$ \triangle ABC$は直角三角形,半円:$ PQ $が直径であり,
2点$ S,T $で接する.
$ BT=5$cm,$ BP=1$cmである.
影の部分の面積を求めよ.

早稲田実業高等部過去問
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \triangle ABC$は直角三角形,半円:$ PQ $が直径であり,
2点$ S,T $で接する.
$ BT=5$cm,$ BP=1$cmである.
影の部分の面積を求めよ.

早稲田実業高等部過去問
投稿日:2023.02.07

<関連動画>

中1数学「反比例のグラフの式の求め方」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第41回反比例のグラフの式の求め方~

例1
次のグラフの式を求めなさい。

例2
yをxの式で表しなさい。

(1)yはxに反比例し、点(2.9)を通る。

(2)yはxに反比例し、点(-12,5/3)を通る。
この動画を見る 

2023高校入試数学解説76問目 空間上の平面  愛知県

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
空間内の平面について正しく述べたものを全て選べ
ア.異なる2点を含む平面は1つしかない
イ.交わる2直線を含む平面は1つしかない
ウ.平行な2直線を含む平面は1つしかない
エ.同じ直線上にある3点を含む平面は1つしかない

2023愛知県
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

まさか数えるの? 青雲 正二十面体 2022入試問題解説100問解説64問目!

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 数学を数楽に
問題文全文(内容文):
正二十面体の
頂点の数は▢個
辺の数は▢本
*図は動画内参照

2022青雲高等学校
この動画を見る 

高校入試 図形 明大中野

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
BD=?
*図は動画内参照

明治大学付属中野高等学校
この動画を見る 
PAGE TOP