数検1級 ルートの中にℹ︎ - 質問解決D.B.(データベース)

数検1級 ルートの中にℹ︎

問題文全文(内容文):
$\sqrt{ 1+\sqrt{ 3 }i }+\sqrt{ 1-\sqrt{ 3 }i }$
外側の平方根は実部が正
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{ 1+\sqrt{ 3 }i }+\sqrt{ 1-\sqrt{ 3 }i }$
外側の平方根は実部が正
投稿日:2019.09.13

<関連動画>

#66数学検定1級1次過去問「怖いのは計算ミスのみ」 #式変形

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$(1-\sqrt[ 3 ]{ 2 }+\sqrt[ 3 ]{ 4 })^3$を簡単にせよ

出典:数検1級1次
この動画を見る 

微分方程式①【微分方程式の最初】(高専数学、数検1級解析)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
微分方程式
x:tの関数
$\frac{d^nx}{dt^n}+3\frac{d^3x}{dt^3}+2\frac{dx}{dt}+1=0$
(n>3)のとき
n階微分方程式
$\frac{dx}{dt}=-k(x-1):1階微分方程式\cdots*$
$x=(c-1)e^{-kt}+1$
*の解である

$左辺=\frac{dx}{dt}=-k(c-1)e^{-kt}$
$右辺=-k((c-1)e^{-kt}+1-1)$
$=-k(c-1)e^{-kt}$
∴左辺=右辺
c≠0
(1)$x=\frac{c}{t}$が解となる
微分方程式を求めよ
(2)曲線$x=ce^{2t}$が解曲線となる微分方程式を求めよ。
この動画を見る 

重積分⑦-4【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$∬_D(4-x^2-y^2)dxdy$
$D:x^2+(y-1)^2 \leqq 1 $ , $y \leqq x$
この動画を見る 

練習問題37 数検1級1次 高専数学 教採 重積分の積分順序の変更

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$D:0\leqq x \leqq 2,x \leqq y \leqq 2$
$ \displaystyle \iint_D e^{y^2} dx \ dy$を計算せよ.
この動画を見る 

練習問題33 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dy}{dx}=(x+y)^2$
の一般解を求めよ.
この動画を見る 
PAGE TOP