【キミのやり方であっている!】連立方程式:関西学院高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【キミのやり方であっている!】連立方程式:関西学院高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 関西学院高等学校

連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 }{3}y-\displaystyle \frac{ 14 }{5})=33 \\
2(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 4}{5}-\displaystyle \frac{ 1 }{3}y)=-3
\end{array}
\right.
\end{eqnarray}$
を解け。
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#関西学院高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 関西学院高等学校

連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 }{3}y-\displaystyle \frac{ 14 }{5})=33 \\
2(\displaystyle \frac{ 5 }{6}x+\displaystyle \frac{ 14 }{3})-5(\displaystyle \frac{ 1 4}{5}-\displaystyle \frac{ 1 }{3}y)=-3
\end{array}
\right.
\end{eqnarray}$
を解け。
投稿日:2020.12.05

<関連動画>

これ説明して

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数学(中学生)#中1数学#中2数学#中3数学#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2$\div \displaystyle \frac{1}{2}$
この動画を見る 

高校受験生よ。見よ。蝶ネクタイ形 面積が等しいと言われたら〇〇変形 一次関数 北海道

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 数学を数楽に
問題文全文(内容文):
△BPQ=△COQ
点Pの座標は?
*図は動画内参照

北海道
この動画を見る 

中2数学「2直線の交点の求め方」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~2直線の交点の求め方

例1 y = - x + 3と =2x-3の交点の座標を求めなさい。

例2 y = 3分の1 x - 2と、y =2x+3の交点の座標を求めなさい。
この動画を見る 

愛工大名電 確率の和 確率の積   教えてください

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
1つのサイコロを出た目の数の和が5の倍数になるまで繰り返し投げる。
投げる回数が2回で終わる確率は?

愛知工業大学名電高等学校
この動画を見る 

【高校受験対策/数学】死守-79

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守79

①$-3-(-7)$を計算しなさい。

②$8a^3b^5÷4a^2b^3$を計算しなさい。

③$x^2-8x+16$を因数分解しなさい。

④$a=\frac{2b-c}{5}$を$c$について解きなさい。

⑤二次方程式$x^2+5x+2=0$を解きなさい。

⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。

⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。

平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。

ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$

⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。

⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。

ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
この動画を見る 
PAGE TOP