図形と計量 有名角以外を含む三角比計算【NI・SHI・NOがていねいに解説】 - 質問解決D.B.(データベース)

図形と計量 有名角以外を含む三角比計算【NI・SHI・NOがていねいに解説】

問題文全文(内容文):
次の式の値を求めよ。
(1) $\sin^240°+\sin^250°$
(2) $\tan35°\tan55°+\tan15°\tan75°$
(3) $(\sin70°+\sin20°)^2-2\tan70°\cos^250°$
チャプター:

0:00 オープニング
0:23 50°を45°未満にする
3:01 あとは計算!
3:51 (2)問題確認
4:02 すべての角を45°未満に
6:47 あとは計算!
7:33 (3)問題確認
7:57 すべての角を45°未満に
10:38 あとは計算!

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を求めよ。
(1) $\sin^240°+\sin^250°$
(2) $\tan35°\tan55°+\tan15°\tan75°$
(3) $(\sin70°+\sin20°)^2-2\tan70°\cos^250°$
投稿日:2023.05.24

<関連動画>

福田の一夜漬け数学〜ルート計算のコツ(2)値の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x=\frac{\sqrt5+2}{\sqrt5-2}$

$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。

(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$


$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$

(2)$x^2+\frac{1}{x^2}$

(3)$x^3+\frac{1}{x^3}$

(4)$x^4+\frac{1}{x^4}$

(5)$x^5+\frac{1}{x^5}$


$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
この動画を見る 

福田のおもしろ数学345〜複雑な2重根号の式が整数となる条件

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{ \mathstrut \frac{25}{2} +\sqrt{ \mathstrut \frac{625}{4} -n}}$+$\sqrt{ \mathstrut \frac{25}{2} -\sqrt{ \mathstrut \frac{625}{4} -n}}$が整数となるような整数$n$をすべて求めよ。
この動画を見る 

福田の数学〜中央大学2024経済学部第1問(2)〜集合の要素の個数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1$から$1000$までの整数全体の集合を$U$とする。$U$の部分集合$A,B$をそれぞれ$A=\{x|xは5の倍数\},B=\{x|xは7の倍数\}$とするとき、$\overline A \cap \overline B$の要素の個数$n(\overline A \cap \overline B)$を求めよ。
この動画を見る 

【高校数学】余弦定理の応用~問題演習~ 3-7.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

19神奈川県教員採用試験(数学:関数の最大値)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=-(x^2+2x)^2+4(x^2+2x)+\frac{7}{2} \quad (-2 \leqq x \leqq 1)$の値域に含まれる最大の整数を求めよ。
この動画を見る 
PAGE TOP