福田の数学〜上智大学2024TEAP利用型理系第2問〜底面が長方形の四角錐の体積 - 質問解決D.B.(データベース)

福田の数学〜上智大学2024TEAP利用型理系第2問〜底面が長方形の四角錐の体積

問題文全文(内容文):
平面$\alpha$上にある長方形$\rm ABCD$と、$\alpha$上にない点$\rm O$で定まる四角錐$\rm O$-$\rm ABCD$を
考える。$\overrightarrow{\rm OA}=\vec{a},\overrightarrow{\rm OB} =\vec{b},\overrightarrow{\rm OC} =\vec{c},\overrightarrow{\rm OD} =\vec{d},$ とするとき、
$|\vec{a}|=9, |\vec{b}|=7,|\vec{c}|=2\sqrt{11},\vec{a}\cdot \vec{b}= 33,\vec{b}\cdot\vec{c} = 34$
である。
(1)$\vec{d}$を$\vec{a},\vec{b},\vec{c}$で表すと$\vec{d}=\boxed{オ}\vec{a}+\boxed{カ}\vec{b}+\boxed{キ}\vec{c}$
(2) $\vec{a}\cdot \vec{c}=\boxed{ク}$
(3) $\rm O$から平面$\alpha$に垂線$\rm OH$を下ろすと$\overrightarrow{\rm OH}=\dfrac{\boxed{ケ}}{\boxed{コ}}\vec a+\dfrac{\boxed{サ}}{\boxed{シ}}\vec b+\dfrac{\boxed{ス}}{\boxed{セ}}\vec c$であり点$\rm H$は$\boxed{う}$ にある。
(4) 長方形$\rm ABCD$の面積は$\boxed{ソ}$である。
(5) 四角錐$\rm O$-$\rm ABCD$の体積は$\boxed{タ}$である。
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面$\alpha$上にある長方形$\rm ABCD$と、$\alpha$上にない点$\rm O$で定まる四角錐$\rm O$-$\rm ABCD$を
考える。$\overrightarrow{\rm OA}=\vec{a},\overrightarrow{\rm OB} =\vec{b},\overrightarrow{\rm OC} =\vec{c},\overrightarrow{\rm OD} =\vec{d},$ とするとき、
$|\vec{a}|=9, |\vec{b}|=7,|\vec{c}|=2\sqrt{11},\vec{a}\cdot \vec{b}= 33,\vec{b}\cdot\vec{c} = 34$
である。
(1)$\vec{d}$を$\vec{a},\vec{b},\vec{c}$で表すと$\vec{d}=\boxed{オ}\vec{a}+\boxed{カ}\vec{b}+\boxed{キ}\vec{c}$
(2) $\vec{a}\cdot \vec{c}=\boxed{ク}$
(3) $\rm O$から平面$\alpha$に垂線$\rm OH$を下ろすと$\overrightarrow{\rm OH}=\dfrac{\boxed{ケ}}{\boxed{コ}}\vec a+\dfrac{\boxed{サ}}{\boxed{シ}}\vec b+\dfrac{\boxed{ス}}{\boxed{セ}}\vec c$であり点$\rm H$は$\boxed{う}$ にある。
(4) 長方形$\rm ABCD$の面積は$\boxed{ソ}$である。
(5) 四角錐$\rm O$-$\rm ABCD$の体積は$\boxed{タ}$である。
投稿日:2024.09.26

<関連動画>

【球面の方程式って?】球面の方程式の解釈と求め方を解説!〔数学、高校数学〕

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
球面の方程式の解釈と求め方について解説します。
この動画を見る 

【数B】空間ベクトル:ベクトルの大きさの最小値

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$ a=(3,4,4), b=(2,3,-1)$がある。実数 t を変化させるとき、$c=a+tb$の大きさの最小値と、その時の t の値を求めよ。
この動画を見る 

【数C】空間ベクトル:次の2点間の距離を求めよ。A(1,2,3)B(2,4,5)

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2点間の距離を求めよ。A(1,2,3)B(2,4,5)
この動画を見る 

【数C】空間ベクトル:球面の方程式! 次の条件を満たす球面の方程式を求めよう。(1)直径の両端が2点(1,-4,3) (3,0,1)である。(2)点(1,-2,5)を通り、3つの座標平面に接する。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす球面の方程式を求めよ。
(1)直径の両端が2点(1,-4,3) (3,0,1)である。
(2)点(1,-2,5)を通り、3つの座標平面に接する。
この動画を見る 

【数C】空間ベクトル:平面の方程式の求め方(①法線ベクトルを用いる方法) 3点A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(0,1,1),B(6,-1,-1),C(-3,-1,1)を通る平面の方程式を求めよ。
この動画を見る 
PAGE TOP