福田の数学〜上智大学2024TEAP利用型理系第2問〜底面が長方形の四角錐の体積 - 質問解決D.B.(データベース)

福田の数学〜上智大学2024TEAP利用型理系第2問〜底面が長方形の四角錐の体積

問題文全文(内容文):
平面$\alpha$上にある長方形$\rm ABCD$と、$\alpha$上にない点$\rm O$で定まる四角錐$\rm O$-$\rm ABCD$を
考える。$\overrightarrow{\rm OA}=\vec{a},\overrightarrow{\rm OB} =\vec{b},\overrightarrow{\rm OC} =\vec{c},\overrightarrow{\rm OD} =\vec{d},$ とするとき、
$|\vec{a}|=9, |\vec{b}|=7,|\vec{c}|=2\sqrt{11},\vec{a}\cdot \vec{b}= 33,\vec{b}\cdot\vec{c} = 34$
である。
(1)$\vec{d}$を$\vec{a},\vec{b},\vec{c}$で表すと$\vec{d}=\boxed{オ}\vec{a}+\boxed{カ}\vec{b}+\boxed{キ}\vec{c}$
(2) $\vec{a}\cdot \vec{c}=\boxed{ク}$
(3) $\rm O$から平面$\alpha$に垂線$\rm OH$を下ろすと$\overrightarrow{\rm OH}=\dfrac{\boxed{ケ}}{\boxed{コ}}\vec a+\dfrac{\boxed{サ}}{\boxed{シ}}\vec b+\dfrac{\boxed{ス}}{\boxed{セ}}\vec c$であり点$\rm H$は$\boxed{う}$ にある。
(4) 長方形$\rm ABCD$の面積は$\boxed{ソ}$である。
(5) 四角錐$\rm O$-$\rm ABCD$の体積は$\boxed{タ}$である。
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面$\alpha$上にある長方形$\rm ABCD$と、$\alpha$上にない点$\rm O$で定まる四角錐$\rm O$-$\rm ABCD$を
考える。$\overrightarrow{\rm OA}=\vec{a},\overrightarrow{\rm OB} =\vec{b},\overrightarrow{\rm OC} =\vec{c},\overrightarrow{\rm OD} =\vec{d},$ とするとき、
$|\vec{a}|=9, |\vec{b}|=7,|\vec{c}|=2\sqrt{11},\vec{a}\cdot \vec{b}= 33,\vec{b}\cdot\vec{c} = 34$
である。
(1)$\vec{d}$を$\vec{a},\vec{b},\vec{c}$で表すと$\vec{d}=\boxed{オ}\vec{a}+\boxed{カ}\vec{b}+\boxed{キ}\vec{c}$
(2) $\vec{a}\cdot \vec{c}=\boxed{ク}$
(3) $\rm O$から平面$\alpha$に垂線$\rm OH$を下ろすと$\overrightarrow{\rm OH}=\dfrac{\boxed{ケ}}{\boxed{コ}}\vec a+\dfrac{\boxed{サ}}{\boxed{シ}}\vec b+\dfrac{\boxed{ス}}{\boxed{セ}}\vec c$であり点$\rm H$は$\boxed{う}$ にある。
(4) 長方形$\rm ABCD$の面積は$\boxed{ソ}$である。
(5) 四角錐$\rm O$-$\rm ABCD$の体積は$\boxed{タ}$である。
投稿日:2024.09.26

<関連動画>

【数B】空間ベクトル:四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+2BP-7CP-3DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。
AP+2BP-7CP-3DP=0
この動画を見る 

【数C】【空間ベクトル】平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。
この動画を見る 

福田の数学〜筑波大学2023年理系第3問〜球面に内接する四面体

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標空間内の原点Oを中心とする半径$r$の球面S上に4つの頂点がある四面体ABCDが
$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$
を満たしているとする。また三角形ABCの重心をGとする。
(1)$\overrightarrow{OG}$を$\overrightarrow{OD}$を用いて表せ。
(2)$\overrightarrow{OA}$・$\overrightarrow{OB}$+$\overrightarrow{OB}$・$\overrightarrow{OC}$+$\overrightarrow{OC}$・$\overrightarrow{OA}$を$r$を用いて表せ。
(3)点Pが球面S上を動くとき、$\overrightarrow{PA}$・$\overrightarrow{PB}$+$\overrightarrow{PB}$・$\overrightarrow{PC}$+$\overrightarrow{PC}$・$\overrightarrow{PA}$の最大値を$r$を用いて表せ。さらに、最大値をとるときの点Pに対して、|$\overrightarrow{PG}$|を$r$を用いて表せ。

2023筑波大学理系過去問
この動画を見る 

福田の数学〜立教大学2023年理学部第2問〜ベクトルの共面条件と共線条件

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<$k$1とする。座標空間内の四面体OABCについて、線分ACの中点をD、線分BCの中点をE、線分DEを1:2に内分する点をPとする。また、
線分OPを$k$:1-$k$に内分する点をQとし、Rを$\overrightarrow{CR}$=$l\overrightarrow{CQ}$を満たす点とする。
$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおいたとき、次の問いに答えよ。
(1)$\overrightarrow{OD}$, $\overrightarrow{OE}$, $\overrightarrow{OP}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$を用いて表せ。
(2)$\overrightarrow{OR}$を$\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$, $k$, $l$を用いて表せ。
(3)Rが平面OAB上にあるとき、$l$を$k$を用いて表せ。
(4)線分OAの中点をF、線分OBの中点をGとする。Rが線分FG上にあるときの$k$の値を求めよ。
この動画を見る 

【数C】空間ベクトル:2直線の交点の位置ベクトル!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、辺ABを1:3に内分する点をL、点OCを3:1に内分する点をM、線分CLを3:2に内分する点をN、線分LMとONの交点をPとし、OA=a、OB=b、OC=cとするとき、OPをa,b,cで表せ。
この動画を見る 
PAGE TOP