福田の数学〜上智大学2024TEAP利用型理系第2問〜底面が長方形の四角錐の体積 - 質問解決D.B.(データベース)

福田の数学〜上智大学2024TEAP利用型理系第2問〜底面が長方形の四角錐の体積

問題文全文(内容文):
平面$\alpha$上にある長方形$\rm ABCD$と、$\alpha$上にない点$\rm O$で定まる四角錐$\rm O$-$\rm ABCD$を
考える。$\overrightarrow{\rm OA}=\vec{a},\overrightarrow{\rm OB} =\vec{b},\overrightarrow{\rm OC} =\vec{c},\overrightarrow{\rm OD} =\vec{d},$ とするとき、
$|\vec{a}|=9, |\vec{b}|=7,|\vec{c}|=2\sqrt{11},\vec{a}\cdot \vec{b}= 33,\vec{b}\cdot\vec{c} = 34$
である。
(1)$\vec{d}$を$\vec{a},\vec{b},\vec{c}$で表すと$\vec{d}=\boxed{オ}\vec{a}+\boxed{カ}\vec{b}+\boxed{キ}\vec{c}$
(2) $\vec{a}\cdot \vec{c}=\boxed{ク}$
(3) $\rm O$から平面$\alpha$に垂線$\rm OH$を下ろすと$\overrightarrow{\rm OH}=\dfrac{\boxed{ケ}}{\boxed{コ}}\vec a+\dfrac{\boxed{サ}}{\boxed{シ}}\vec b+\dfrac{\boxed{ス}}{\boxed{セ}}\vec c$であり点$\rm H$は$\boxed{う}$ にある。
(4) 長方形$\rm ABCD$の面積は$\boxed{ソ}$である。
(5) 四角錐$\rm O$-$\rm ABCD$の体積は$\boxed{タ}$である。
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面$\alpha$上にある長方形$\rm ABCD$と、$\alpha$上にない点$\rm O$で定まる四角錐$\rm O$-$\rm ABCD$を
考える。$\overrightarrow{\rm OA}=\vec{a},\overrightarrow{\rm OB} =\vec{b},\overrightarrow{\rm OC} =\vec{c},\overrightarrow{\rm OD} =\vec{d},$ とするとき、
$|\vec{a}|=9, |\vec{b}|=7,|\vec{c}|=2\sqrt{11},\vec{a}\cdot \vec{b}= 33,\vec{b}\cdot\vec{c} = 34$
である。
(1)$\vec{d}$を$\vec{a},\vec{b},\vec{c}$で表すと$\vec{d}=\boxed{オ}\vec{a}+\boxed{カ}\vec{b}+\boxed{キ}\vec{c}$
(2) $\vec{a}\cdot \vec{c}=\boxed{ク}$
(3) $\rm O$から平面$\alpha$に垂線$\rm OH$を下ろすと$\overrightarrow{\rm OH}=\dfrac{\boxed{ケ}}{\boxed{コ}}\vec a+\dfrac{\boxed{サ}}{\boxed{シ}}\vec b+\dfrac{\boxed{ス}}{\boxed{セ}}\vec c$であり点$\rm H$は$\boxed{う}$ にある。
(4) 長方形$\rm ABCD$の面積は$\boxed{ソ}$である。
(5) 四角錐$\rm O$-$\rm ABCD$の体積は$\boxed{タ}$である。
投稿日:2024.09.26

<関連動画>

【数B】ベクトル:ベクトルの基本⑲空間ベクトルにおける三角形の面積

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A$(-2,1,3),B=(-3,1,4),C=(-3,3,5)$が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 

【数C】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
この動画を見る 

【数B】空間ベクトル:平行、一直線の問題!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)四面体ABCDにおいて、△ABCの重心をE、△ABDの重心をFとするとき、$EF /\!/ CD$であることを証明せよ。
(2)3点A(-1,-1,-1),B(1,2,3),C(x,y,1)が一直線上にあるとき、x,yの値を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第4問〜ベクトル方程式と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ Oを原点とする座標空間に2点A(0,0,1), B(0,0,-1)がある。r>0, -π≦θ<πに対して、2点P(r$\cos\theta$,r$\sin\theta$,0),Q($\frac{1}{r}\cos\theta$,$\frac{1}{r}\sin\theta$,0)をとり、2直線APとBQの交点をR(a,b,c)とするとき、次の問いに答えよ。
(1)a,b,cの間に成り立つ関係式を求めよ。
(2)点G(4,1,1)をとる。r,θがr$\cos\theta$=$\frac{1}{2}$を満たしながら変化するとき、内積$\overrightarrow{OG}・\overrightarrow{OR}$の最大値とそのときのa,b,cの値を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP