【高校受験対策】数学-関数32 - 質問解決D.B.(データベース)

【高校受験対策】数学-関数32

問題文全文(内容文):
◎東西に一直線にのびたジョギングコース上に、
P地点と、P地点から東に540m離れたQ地点と、Q地点から東に1860m離れたR地点とがある。
Aさんは、このジョギングコースを通ってP地点とR地点の間を1往復した。
Aさんは、P地点からQ地点まで一定の速さで9分間歩き、
Q地点で立ち止まってストレッチをした後、R地点に向かって分速150mで走った。
Aさんは、P地点を出発してから28分後にR地点に着き、
すぐにP地点に向かって分速150mで走ったところ、
P地点を出発してから44分後に再びP地点に着いた。
右の図は、AさんがP地点を出発してから$x$分後にP地点から$ym$離れているとするとき、
P地点を出発してから再びP地点に着くまでの$x$と$y$の関係をグラフに表したものである。
次の問に最も簡単な数で答えよ。

①AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何mか求めよ。

②AさんがQ地点からR地点に向かって走り始めたのは、
P地点を出発してから何分何秒後か求めよ。

③Bさんは、Aさんが出発した後しばらくして、R地点を出発し、
このジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。
Bさんは、P地点に向かう途中で、R地点に向かって走っているAさんとすれちがい、
AさんがP地点を出発してから39分後に、P地点に向かって走っているAさんに追いつかれた。
AさんとBさんがすれちがった地点は、P地点から何m離れているか求めよ。

図は動画内参照
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎東西に一直線にのびたジョギングコース上に、
P地点と、P地点から東に540m離れたQ地点と、Q地点から東に1860m離れたR地点とがある。
Aさんは、このジョギングコースを通ってP地点とR地点の間を1往復した。
Aさんは、P地点からQ地点まで一定の速さで9分間歩き、
Q地点で立ち止まってストレッチをした後、R地点に向かって分速150mで走った。
Aさんは、P地点を出発してから28分後にR地点に着き、
すぐにP地点に向かって分速150mで走ったところ、
P地点を出発してから44分後に再びP地点に着いた。
右の図は、AさんがP地点を出発してから$x$分後にP地点から$ym$離れているとするとき、
P地点を出発してから再びP地点に着くまでの$x$と$y$の関係をグラフに表したものである。
次の問に最も簡単な数で答えよ。

①AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何mか求めよ。

②AさんがQ地点からR地点に向かって走り始めたのは、
P地点を出発してから何分何秒後か求めよ。

③Bさんは、Aさんが出発した後しばらくして、R地点を出発し、
このジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。
Bさんは、P地点に向かう途中で、R地点に向かって走っているAさんとすれちがい、
AさんがP地点を出発してから39分後に、P地点に向かって走っているAさんに追いつかれた。
AさんとBさんがすれちがった地点は、P地点から何m離れているか求めよ。

図は動画内参照
投稿日:2018.01.13

<関連動画>

ちょっと変わった連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{1}{x+y} -x = 2 \\
\frac{1}{x+y} + y =4
\end{array}
\right.
\end{eqnarray}

2023中央大学付属高等学校
この動画を見る 

円と台形 熊本マリスト学園

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCD=18㎠
AB=?
*図は動画内参照

熊本マリスト学園高等学校
この動画を見る 

【連立方程式最終問題⁈】連立方程式:慶応義塾高等学校(訂正版)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#平方根#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 慶応義塾高等学校
【連立方程式】

$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{5}{x-\sqrt{ 2 }} + \displaystyle \frac{2}{x+\sqrt{ 2 y}}= 1 \\
\displaystyle \frac{1}{x-\sqrt{ 2 }} - \displaystyle \frac{5}{x+\sqrt{ 2y }} = 2
\end{array}
\right.
\end{eqnarray}$
の解は、$x=$▭、$y=$▭である。
四角部分を求めよ。
この動画を見る 

中2数学「二等辺三角形である証明」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~二等辺三角形である証明~

例1 右の図の△ABCで、∠Bの二等分線と辺ACとの交点をDとします。また、点Dを通り、辺BCに平行な直線と辺ABの交点をEとします。このとき、△EBDは二等辺三角形であることを証明しなさい。

※図は動画内参照
この動画を見る 

【数学】中2-86 確率チャレンジ Lv.8(まとめ編②)

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
確率を求めよ。
①Aの箱には$\boxed{ 5 },\boxed{ -2 },\boxed{ -6 }$が
Bの箱には$\boxed{ + },\boxed{ - } $が入っている。
ひいたものはもどさずに、A→B→Aの 順番にひき式を
つくり、その答えが 3より大きくなる確率は?

②図のように8段の階段があり、図の場所に AさんとBさんがいる。2人はそれぞれさいころを振り、出た目の数だけ、
Aさんは上り、Bさんは下る。
さいころを1回ずつ振った後に、 AさんがBさんより上にいる 確率は?
※図は動画内参照

③1辺の長さが1cmのひし形ABCD上の図の位置に2点P,Qがいる。大小2つのさいころを投げ、大きいさいころの目の数だけ、点Pが反時計まわりに、小さいさいころの目の数だけ、点Qが時計まわりに頂点を移動する。
移動後に2点が同じ場所にいる確率は?
※図は動画内参照
この動画を見る 
PAGE TOP