大学入試問題#261 山形大学(2011) #数列 - 質問解決D.B.(データベース)

大学入試問題#261 山形大学(2011) #数列

問題文全文(内容文):
$x_1=1$
$x_{n+1}=3x_n+\displaystyle \frac{1}{2^{n+1}}$
一般項$x_n$を求めよ。

出典:2011年山形大学 入試問題
チャプター:

00:00 問題掲示
00:10 本編スタート
04:52 作成した解答①の掲示
05:06 作成した解答②の掲示

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学
指導講師: ますただ
問題文全文(内容文):
$x_1=1$
$x_{n+1}=3x_n+\displaystyle \frac{1}{2^{n+1}}$
一般項$x_n$を求めよ。

出典:2011年山形大学 入試問題
投稿日:2022.07.23

<関連動画>

数学「大学入試良問集」【7−6 正方形と長方形の共有面積】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上に4点$O(0,0),A(2,0),B(2,1),C(0,1)$がある。
実数$a$に対して4点$P(a+1,a),Q(a,a+1),R(a-1,a),S(a,a-1)$をとる。
このとき、次の問いに答えよ。
(1)
長方形$QABC$と正方形$PQRS$が共有点をもつような$a$の範囲を求めよ。

(2)
長方形$OABC$と正方形$PQRS$の共通部分の面積が最大となる$a$の値と、そのときの共通部分の面積を求めよ。
この動画を見る 

等比数列 大阪大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?


出典:1987年大阪大学 過去問
この動画を見る 

高知大(医)3項間漸化式

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=1,a_2=5,a_{n+2}=4a_{n+1}-3a_n-4$
の一般項$a_n$を求めよ.

高知大(医)過去問
この動画を見る 

大学入試問題#510「よくある形」 #防衛医科大学(2015) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#学校別大学入試過去問解説(数学)#数学(高校生)#数B#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=e$
$a_{n+2}=a_n^{-2}・a_{n+1}^3$
一般項$a_n$を求めよ

出典:2015年防衛医科大学 入試問題
この動画を見る 

筑波大 指数・対数関数の微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
全ての正の実数$x$について
$x^{\sqrt{ a }} \leqq a^{\sqrt{ x }}$となる正の実数$a$を求めよ

出典:筑波大学 過去問
この動画を見る 
PAGE TOP