福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径 - 質問解決D.B.(データベース)

福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径

問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。

2023慶應義塾大学経済学部過去問
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。

2023慶應義塾大学経済学部過去問
投稿日:2023.11.17

<関連動画>

【数Ⅰ】数と式: √(6-√32)の2重根号を外す!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{(6-\sqrt{32})}$の2重根号を外しなさい
この動画を見る 

二次関数の最大値と最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=x^2$で$2 \leqq x < 5$のときのyの最大値と最小値を求めよ
この動画を見る 

式の値 2通りで解説!!

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(60-x)(x-40)=50$
$(60-x)^2+(x-40)^2 =?$
この動画を見る 

福田の一夜漬け数学〜絶対不等式(2)〜受験編

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#三角関数#軌跡と領域#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)任意の$\theta$に対して、$-2 \leqq x\cos\theta+y\sin\theta \leqq y+1$ が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。

(2)任意の角$\alpha,\beta$に対して、$-1 \leqq x^2\cos\alpha+y\sin\beta \leqq 1$が成立するような
点(x,y)の全体からなる領域をxy平面上に図示し、その面積を求めよ。
この動画を見る 

【数Ⅰ】図形と計量:三角比への応用:3つのsinの比から角度を求める!

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,次の等式が成り立つとき,この三角形の最も大きい角の大きさを求めよ。
$\sin A:\sin B:\sin C=7:5:3$
この動画を見る 
PAGE TOP