【中学数学】方程式の利用~追いつく系の問題を丁寧に~【中1数学】 - 質問解決D.B.(データベース)

【中学数学】方程式の利用~追いつく系の問題を丁寧に~【中1数学】

問題文全文(内容文):
1⃣
弟が家を出て、毎分40mで歩く、その5分後に兄が毎分60mで追いかける。
兄が弟に追いつくのは家から何mの地点か。


2⃣
花子さんが家を出て毎分40mで歩いていった。
その10分後に母が毎分120mで花子さんを追いかけた。
母が花子さんに追いつくのは花子さんが家を出てから何分後か。


3⃣
1周3000mの池がある。池の周りをA、Bが同じ地点から互いに反対方向にスタートし、
Aは分速80mで歩き、Bは分速170mで走ったとき、何分後に2人が出会うか。


4⃣
1周480mの池がある。池の周りをA、Bが同じ地点から同時に出発して、Aは毎分65m、
Bは毎分55mの速さで同じ方向に歩き出すと、AがBをはじめて追いこすのは出発して
から何分後か。
チャプター:

00:00 はじまり

00:51 問題だよ

01:01 問題解説(1)

04:42 問題解説(2)

08:43 問題解説(3)

10:38 問題解説(4)

12:51 まとめ

13:38 問題と答え

単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
弟が家を出て、毎分40mで歩く、その5分後に兄が毎分60mで追いかける。
兄が弟に追いつくのは家から何mの地点か。


2⃣
花子さんが家を出て毎分40mで歩いていった。
その10分後に母が毎分120mで花子さんを追いかけた。
母が花子さんに追いつくのは花子さんが家を出てから何分後か。


3⃣
1周3000mの池がある。池の周りをA、Bが同じ地点から互いに反対方向にスタートし、
Aは分速80mで歩き、Bは分速170mで走ったとき、何分後に2人が出会うか。


4⃣
1周480mの池がある。池の周りをA、Bが同じ地点から同時に出発して、Aは毎分65m、
Bは毎分55mの速さで同じ方向に歩き出すと、AがBをはじめて追いこすのは出発して
から何分後か。
投稿日:2021.04.24

<関連動画>

中1数学「比例の式」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第33回比例の式~例題 ◎比例とは?―

例題
時速60kmの自動車で、300km離れた町まで行きます。
出発してからx時間後の進んだ距離をykmとします。

(1) yをxの式で表しなさい。

(2) 比例定数を答えなさい。

(3)xの変域とyの変域を答えなさい。
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 

図形:香川県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)#香川県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 香川県の高校

図のような正方形$ABCD$がある。
辺$CD$上に、点$E$($2$点$C, D$と異なる)。
→点$B$と点$E$を結ぶ。
線分$BE$上に、$AB=AF$となる点$F$
(点$B$と異なる)。
→点$A$と点$F$を結ぶ。
$\angle DAF=40°$であるとき、
$\angle EBC$の大きさは何度か求めよ。
※図は動画内参照
この動画を見る 

【条件から導き出されることは…!】整数:灘高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#整数の性質#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x$を$x-n+a$と表す.
$ x^2+a^2=8$のとき,$n=\Box,x=\Box$である.

灘高校過去問
この動画を見る 

ここ分からんかったやろ?

アイキャッチ画像
単元: #数学(中学生)#中1数学#数Ⅰ#資料の活用#データの分析#データの分析#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
四分位数
四分位範囲
箱ひげ図

解説動画です
この動画を見る 
PAGE TOP