【中学数学】方程式の利用~追いつく系の問題を丁寧に~【中1数学】 - 質問解決D.B.(データベース)

【中学数学】方程式の利用~追いつく系の問題を丁寧に~【中1数学】

問題文全文(内容文):
1⃣
弟が家を出て、毎分40mで歩く、その5分後に兄が毎分60mで追いかける。
兄が弟に追いつくのは家から何mの地点か。


2⃣
花子さんが家を出て毎分40mで歩いていった。
その10分後に母が毎分120mで花子さんを追いかけた。
母が花子さんに追いつくのは花子さんが家を出てから何分後か。


3⃣
1周3000mの池がある。池の周りをA、Bが同じ地点から互いに反対方向にスタートし、
Aは分速80mで歩き、Bは分速170mで走ったとき、何分後に2人が出会うか。


4⃣
1周480mの池がある。池の周りをA、Bが同じ地点から同時に出発して、Aは毎分65m、
Bは毎分55mの速さで同じ方向に歩き出すと、AがBをはじめて追いこすのは出発して
から何分後か。
チャプター:

00:00 はじまり

00:51 問題だよ

01:01 問題解説(1)

04:42 問題解説(2)

08:43 問題解説(3)

10:38 問題解説(4)

12:51 まとめ

13:38 問題と答え

単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
弟が家を出て、毎分40mで歩く、その5分後に兄が毎分60mで追いかける。
兄が弟に追いつくのは家から何mの地点か。


2⃣
花子さんが家を出て毎分40mで歩いていった。
その10分後に母が毎分120mで花子さんを追いかけた。
母が花子さんに追いつくのは花子さんが家を出てから何分後か。


3⃣
1周3000mの池がある。池の周りをA、Bが同じ地点から互いに反対方向にスタートし、
Aは分速80mで歩き、Bは分速170mで走ったとき、何分後に2人が出会うか。


4⃣
1周480mの池がある。池の周りをA、Bが同じ地点から同時に出発して、Aは毎分65m、
Bは毎分55mの速さで同じ方向に歩き出すと、AがBをはじめて追いこすのは出発して
から何分後か。
投稿日:2021.04.24

<関連動画>

中1数学「反比例の式の求め方」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~第36回反比例の式の求め方~

例1
yはxに反比例し、X=4のときY=-5であるとき。 yをXの式で表しなさい。

例2
yはxに反比例し、X=3のときy=6です。 x=9のときのyの値を求めなさい。

例3
y-1はX-2に反比例し、x=4のときy=7です。 y=-3のとき、xの値を求めなさい。
この動画を見る 

【学問に王道なし!】整数:福岡大学附属大濠高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ n $は正の整数であり, $ a,b,c,d $は整数である.
$ n=(a^2-1)(b^2-2)\times(c^2-3)(d^2-4)$

このような$ \color{red}{nの値}$で最小の値は$ \Box $である.

福岡大学附属大濠高等学校過去問
この動画を見る 

この面積求めよ~対角線が垂直に交わる四角形の面積の求め方~

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#平面図形#平面図形#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
対角線が垂直に交わる四角形の面積の求め方
この動画を見る 

【3分で別解まで分かる!】図形:長崎県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)#長崎県公立高校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 長崎県の公立高校

$\angle x$の大きさを求めよ。

図において、$l$と$m$は平行である。
※図は動画内参照
この動画を見る 

【中学数学】正の数,負の数の文章問題演習 1-2.5【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$
\begin{align}
& (1) \ 基準となる地点Aから西へ5\mathsf{m}の地点のことを+5\mathsf{m}と表すとき、次の①,\,②はどの地点か。\\
& ①\ +13\mathsf{m} \ ②\ -5\mathsf{m}
\\\\
& (2) \ 基準となる地点Aから北へ1\mathsf{m}の地点のことを+1\mathsf{m}と表すとき、次の①,\,②はどの地点か。\\
& ①\ +7.3\mathsf{m} \ ②\ -3.3\mathsf{m}
\\\\
& (3) \ 山の標高を高尾山の標高599\mathsf{m}を基準にして、それよりも標高が高いときは正の符号を、低いときは負の符号を使って表せ。\\
& ①大山\ +1252\mathsf{m} \ ②宝登山 \ 497\mathsf{m}
\end{align}
$
この動画を見る 
PAGE TOP