数学「大学入試良問集」【14−12空間ベクトルと平面上の点】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−12空間ベクトルと平面上の点】を宇宙一わかりやすく

問題文全文(内容文):
四面体$OABC$において、$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とする。
また、線分$OA$を$1:2$に内分する点を$P$、線分$AC$を$1:2$に内分する点を$Q$、線分$BC$を$2:3$に内分する点を$R$、線分$OB$を$t:(1-t)$に内分する点を$S$とする。
ただし、$0 \lt t \lt 1$とする。
(1)
$\overrightarrow{ PQ },\ \overrightarrow{ PR }$を$\vec{ a },\vec{ b },\vec{ c }$を用いて表しなさい。

(2)
適当な実数$k,l$を用いて$\overrightarrow{ PS }=k\overrightarrow{ PQ }+l\overrightarrow{ PR }$と表されるように、$t$の値を定めなさい。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#帯広畜産大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体$OABC$において、$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とする。
また、線分$OA$を$1:2$に内分する点を$P$、線分$AC$を$1:2$に内分する点を$Q$、線分$BC$を$2:3$に内分する点を$R$、線分$OB$を$t:(1-t)$に内分する点を$S$とする。
ただし、$0 \lt t \lt 1$とする。
(1)
$\overrightarrow{ PQ },\ \overrightarrow{ PR }$を$\vec{ a },\vec{ b },\vec{ c }$を用いて表しなさい。

(2)
適当な実数$k,l$を用いて$\overrightarrow{ PS }=k\overrightarrow{ PQ }+l\overrightarrow{ PR }$と表されるように、$t$の値を定めなさい。
投稿日:2021.10.26

<関連動画>

福井大 2次方程式と複素平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(k \gt 0)$
$x^2-2kx+2k^2=0$の解のうち虚部が正の方を$\alpha$
複素平面上で$0,\alpha,\alpha^2$が二等辺三角形になる。
$k$の値を求めよ

出典:2000年福井大学 過去問
この動画を見る 

大学入試問題#114 岡山県立大学(2009) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{1-x}{(1+x^2)^2}\ dx$を計算せよ。

出典:2009年岡山県立大学 入試問題
この動画を見る 

重積分⑤【積分順序の変更(応用)】(高専数学 微積II,数検1級1次対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
(1)$\int_0^1 \int_y^1 sinx^2dxdy$
(2)$\int_0^{\sqrt3} \int_1^{\sqrt{4-x^2}} \frac{x}{\sqrt{x^2+y^2}} dydx$
この動画を見る 

#三重大学医学部2023#不定積分_49

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#三重大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} x \ \log (x+1)\ dx$を解け.

2023三重大学医学部過去問題
この動画を見る 

千葉大 整数解を持つ条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pは素数であり,
$P^2+(5-P^2)x-3P=0$が整数解をもつのは$P=2$に限ることを示せ.

千葉大過去問
この動画を見る 
PAGE TOP