数学「大学入試良問集」【14−12空間ベクトルと平面上の点】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【14−12空間ベクトルと平面上の点】を宇宙一わかりやすく

問題文全文(内容文):
四面体$OABC$において、$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とする。
また、線分$OA$を$1:2$に内分する点を$P$、線分$AC$を$1:2$に内分する点を$Q$、線分$BC$を$2:3$に内分する点を$R$、線分$OB$を$t:(1-t)$に内分する点を$S$とする。
ただし、$0 \lt t \lt 1$とする。
(1)
$\overrightarrow{ PQ },\ \overrightarrow{ PR }$を$\vec{ a },\vec{ b },\vec{ c }$を用いて表しなさい。

(2)
適当な実数$k,l$を用いて$\overrightarrow{ PS }=k\overrightarrow{ PQ }+l\overrightarrow{ PR }$と表されるように、$t$の値を定めなさい。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#帯広畜産大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体$OABC$において、$\overrightarrow{ OA }=\vec{ a },\ \overrightarrow{ OB }=\vec{ b },\ \overrightarrow{ OC }=\vec{ c }$とする。
また、線分$OA$を$1:2$に内分する点を$P$、線分$AC$を$1:2$に内分する点を$Q$、線分$BC$を$2:3$に内分する点を$R$、線分$OB$を$t:(1-t)$に内分する点を$S$とする。
ただし、$0 \lt t \lt 1$とする。
(1)
$\overrightarrow{ PQ },\ \overrightarrow{ PR }$を$\vec{ a },\vec{ b },\vec{ c }$を用いて表しなさい。

(2)
適当な実数$k,l$を用いて$\overrightarrow{ PS }=k\overrightarrow{ PQ }+l\overrightarrow{ PR }$と表されるように、$t$の値を定めなさい。
投稿日:2021.10.26

<関連動画>

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 

福田の数学〜京都大学2024年理系第2問〜複素数平面上における点の軌跡と領域

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $|x|$≦2 を満たす複素数$x$と、$|y-(8+6i)|$=3 を満たす複素数$y$に対して、$z$=$\displaystyle\frac{x+y}{2}$ とする。このような複素数$z$が複素数平面において動く領域を図示し、その面積を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第2問〜分数関数の接線とベクトル計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$

座標平面上の点$P(1,1)$と点$Q(1,-1)$および

曲線$C:y=\dfrac{1}{x-4}(x\gt 4)$を考える。

(1)曲線$C$の接線で点$Q$を通るものは存在しないことを

証明しなさい。

(2)曲線$C$の接線で点$P$を通るものを$l$とし、

$C$と$l$の接点を$A$とする。

このとき、$l$の方程式は$y=\boxed{キ}$であり、

点$A$の座標は$\boxed{ク}$である。

また、曲線$C$上の点の点$B$が

$\overrightarrow{PB}・\overrightarrow{PA}+\overrightarrow{PA}・\overrightarrow{AQ}+\overrightarrow{AB}・\overrightarrow{AQ}=-\dfrac{2}{3}$

を満たすとき、点$B$の座標は$\boxed{ケ}$である。

(3)$A,B$を(2)で定めた点とする。

正の数$t$に対し、曲線$C$上の点$R\left(t+4,\dfrac{1}{t}\right)$は

点$A$と異なるものとする。

線分$AR$を$2:1$に内分する点を$S$とし、

線分$BS$を$3:2$に内分する点を$T(u,v)$とするとき、

$u$を$t$の式で表すと$u=\boxed{コ}$である。

また、$uv$の値は$t-\boxed{サ}$のとき最小となる。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

【慶應文学部あめりあてゃ】1浪2留の末についに進級!

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#学校別大学入試過去問解説(数学)#大学入試過去問(化学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#慶應義塾大学#数学(高校生)#理科(高校生)#慶應義塾大学#慶應義塾大学#小論文(高校生)#慶應義塾大学
指導講師: Morite2 English Channel
問題文全文(内容文):
藤川天を置き去りにした衝撃展開!**慶應文学部「あめりあてゃ」**のヤバすぎる大学生活が暴露されたぞ。

1浪2留(1年生を3回!)の末、ついに**「仮進級」**を勝ち取ったあめりあてゃ。しかし、喜びの裏には地獄があった!

* **慶應文学部は1年から2年への進級が鬼ムズ**。
* 彼女は語学を2つ(フランス語とドイツ語)も取っていたという**「バカじゃないの」な選択**をしていた。そのうち1科目ずつ落としたため、「仮進級」扱いとなった。
* しかも彼女、GPAは**「0.5」**という信じられない低さ!視力並みに悪いGPAで、人気の「美学美術」(ビビ)への進学は断念。
* 第一志望のビビへの発表を駅の改札で見て、**泣き叫んだ**というエピソードも。
* 結局、第二希望の**西洋史学**に進むことに。

さらに彼女は、**アイドル活動を半年で解散**していたことも判明。すぐに問題が起こり、揉めて解散したらしい。

そして衝撃の事実!彼女は3年間も慶應にいるのに、**三田キャンパスに一度も行ったことがない**というから驚きだ。

次なる目標は**ミスコン出場**!モリテツチャンネル出身者はミスコン・ミスターコン率100%のため、ぜひ出場してほしいと先生たちから強く勧められているぞ。

そして動画のラストには、合格祝いとしてモリテツ先生と**サンリオピューロランドに行く約束**が浮上!ピューロランド編が爆誕する可能性も出てきたぞ。
この動画を見る 

#上智大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{2}{3}\pi} x\sin2x\ dx$

出典:2023年上智大学
この動画を見る 
PAGE TOP