重積分⑨-1【広義積分】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑨-1【広義積分】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
広義積分(重積分)
(1)$∬_D\frac{x}{\sqrt{x^2+y^2}}dxdy$
$D:x^2+y^2 \leqq 1 , x \geqq 0 , y\geqq 0$
(2)$∬_D\frac{1}{(x+1)^2(y+2)^2}dxdy$
$D:x \geqq 0 , y \geqq 0$
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
広義積分(重積分)
(1)$∬_D\frac{x}{\sqrt{x^2+y^2}}dxdy$
$D:x^2+y^2 \leqq 1 , x \geqq 0 , y\geqq 0$
(2)$∬_D\frac{1}{(x+1)^2(y+2)^2}dxdy$
$D:x \geqq 0 , y \geqq 0$
投稿日:2020.11.15

<関連動画>

#明治大学2023#極限_48

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\log (2e^{3x}+4)-ax-b$が
$\displaystyle \lim_{x\to\infty} \ f(x)=0$のとき,
$a,b$の値を求めよ.

2023明治大学過去問題
この動画を見る 

誘導がなければ素晴らしい解法も出てくるんじゃね?

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
点Pは原点を出発して,「確率pで+1,確率1-pで+2」の移動を繰り返す.
ただし$0\leqq p \leqq 1$とする.このような移動を繰り返して自然数nの点に到達する確率を$p_n$と表す.次の問に答えよ.

(1)$p_1,p_2,p_3$を$p$を用いて表せ.
(2)$p_n,p_{n+1},p_{n+2}$の間の関係式を求めよ.
(3)$a_n=p_{n+1}-p_n(n \geqq 1)$とおくとき,数列${a_n}$が満たす漸化式を求めよ.
(4)pとnを用いて,一般項$p_n$を表せ.
(5)数列${p_n}$の極限を調べよ.
この動画を見る 

大学入試問題#299 信州大学(2001 類題②) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{3}\displaystyle \frac{\sqrt{ x }}{\sqrt{ x+1 }-1}dx$

出典:2001年信州大学 入試問題
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy平面の第1象限内において、直線$l:y=mx (m \gt 0)$とx軸の両方に
接している半径aの円をCとし、円Cの中心を通る直線$y=tx (t \gt 0)$を考える。
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。
ただし、$b \gt a$とする。
(1)mを用いてtを表せ。
(2)tを用いて$\frac{b}{a}$を表せ。
(3)極限値$\lim_{m \to +0}\frac{1}{m}(\frac{b}{a}-1)$を求めよ。

2022東北大学理系過去問
この動画を見る 

京都大 合成関数 不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ

出典:2013年京都大学 過去問
この動画を見る 
PAGE TOP