重積分⑫-1【図形Dの重心】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑫-1【図形Dの重心】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
平面上の図形Dの重心Gは
$G\begin{pmatrix}
∬_Dxdxdy & ∬_Dydxdy \\
∬_Ddxdy & ∬_Ddxdy
\end{pmatrix}$
△OABの重心Gは
$G(\frac{0+3+3}{3},\frac{0+0+3}{3})$
$G(2,1)$
*図は動画内参照
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
平面上の図形Dの重心Gは
$G\begin{pmatrix}
∬_Dxdxdy & ∬_Dydxdy \\
∬_Ddxdy & ∬_Ddxdy
\end{pmatrix}$
△OABの重心Gは
$G(\frac{0+3+3}{3},\frac{0+0+3}{3})$
$G(2,1)$
*図は動画内参照
投稿日:2020.11.25

<関連動画>

重積分⑫-2【図形Dの重心】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
図形Dの重心Gは
$G\begin{pmatrix}
∬_Dxdxdy & ∬_Dydxdy \\
∬_Ddxdy & ∬_Ddxdy
\end{pmatrix}$
(1)$y^2=4x,x=1$
で囲まれた図形Dの重心Gを求めよ。
(2)$\sqrt x+\sqrt y =1$,x軸、y軸で囲まれた図形Dの重心Gを求めよ。
この動画を見る 

#36 数検1級1次 過去問 積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}\sqrt{ \displaystyle \frac{1+x}{1-x} }\ dx$を計算せよ。
この動画を見る 

#64 #数検1級1次過去問 #高次方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$4$次方程式
$x^4-4x-1=0$について、次の問いに答えよ。
1.上の方程式の実数解を求めよ。
2.上の方程式の虚数解を求めよ

出典:数検1級1次過去問
この動画を見る 

微分方程式②【微分方程式の解】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\frac{dx}{dt}=x+e^{2t}$
(1)$x=e^{2t}$が解
(2)$x=e^{2t}+ce^t$が一般解
cは任意定数
(3)t=0,x=-1をみたす特殊解を求めよ。
この動画を見る 

#39 数検1級1次 過去問 解と係数の関係 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n:$正の整数
$x^3-mx^2+nx-n=0$のすべての解が正の整数であるような組$(m,n)$を求めよ。
この動画を見る 
PAGE TOP