福田の数学〜上智大学2022年TEAP文系型第2問〜空間の位置ベクトル - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年TEAP文系型第2問〜空間の位置ベクトル

問題文全文(内容文):
空間内に立方体ABCD-EFGHがある。辺ABを2:1に内分
する点をP、線分CPの中点をQとする。
(1)$\overrightarrow{ AQ }=\frac{\boxed{ス}}{\boxed{セ}}\overrightarrow{ AB }+$
$\frac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{ AD }$である。
(2)線分AG上の点Rを$\overrightarrow{ QR }∟\overrightarrow{ AG }$となるようにとると
$\overrightarrow{ AR }=\frac{\boxed{チ}}{\boxed{ツ}}\overrightarrow{ AG }$である。
(3)直線QRが平面EFGHと交わる点をSとすると
$\overrightarrow{ AS }=\frac{\boxed{テ}}{\boxed{ト}\overrightarrow{ AB }}+$
$\frac{\boxed{ナ}}{\boxed{二}}\overrightarrow{ AD }+\boxed{ヌ}\ \overrightarrow{ AE }$である。

2022上智大学文系過去問
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間内に立方体ABCD-EFGHがある。辺ABを2:1に内分
する点をP、線分CPの中点をQとする。
(1)$\overrightarrow{ AQ }=\frac{\boxed{ス}}{\boxed{セ}}\overrightarrow{ AB }+$
$\frac{\boxed{ソ}}{\boxed{タ}}\overrightarrow{ AD }$である。
(2)線分AG上の点Rを$\overrightarrow{ QR }∟\overrightarrow{ AG }$となるようにとると
$\overrightarrow{ AR }=\frac{\boxed{チ}}{\boxed{ツ}}\overrightarrow{ AG }$である。
(3)直線QRが平面EFGHと交わる点をSとすると
$\overrightarrow{ AS }=\frac{\boxed{テ}}{\boxed{ト}\overrightarrow{ AB }}+$
$\frac{\boxed{ナ}}{\boxed{二}}\overrightarrow{ AD }+\boxed{ヌ}\ \overrightarrow{ AE }$である。

2022上智大学文系過去問
投稿日:2022.10.04

<関連動画>

福田の数学〜東京慈恵会医科大学2023年医学部第4問〜ベクトル方程式と関数の増減

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数C#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ Oを原点とする座標空間に2点A(0,0,1), B(0,0,-1)がある。r>0, -π≦θ<πに対して、2点P(r$\cos\theta$,r$\sin\theta$,0),Q($\frac{1}{r}\cos\theta$,$\frac{1}{r}\sin\theta$,0)をとり、2直線APとBQの交点をR(a,b,c)とするとき、次の問いに答えよ。
(1)a,b,cの間に成り立つ関係式を求めよ。
(2)点G(4,1,1)をとる。r,θがr$\cos\theta$=$\frac{1}{2}$を満たしながら変化するとき、内積$\overrightarrow{OG}・\overrightarrow{OR}$の最大値とそのときのa,b,cの値を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

【数C】空間ベクトル:4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよ。
また、中心座標と半径も求めよ。
この動画を見る 

【高校数学】 数B-43 空間ベクトルの内積③

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①4点$A(8,2,-3),B(1,3,2),C(5,1,8),D(3,-3,6)$を頂点とする
四面体$ABCD$がある.$AB\perp BC,AB\perp BD$であることを示し,
四面体$ABCD$の体積を求めよう.

②4点$0(0,0,0),A(4,0,2),B(3,3,3),C(3,0,4)$を頂点とする
四面体$OABC$の体積を求めよう.
この動画を見る 

福田の数学〜立教大学2024年理学部第1問(5)〜空間ベクトルと直線のベクトル方程式

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$$座標空間において、点(-1,0,0)を通りベクトル\vec{ a }=(0,1,1)に平行な直線
上の点と、$$$$点(0,0,4)を通り\vec{ b }=(1,2,0)に平行な直線上の点の距離
の最小値は\boxed{ ク }である。$$
この動画を見る 

【数C】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
この動画を見る 
PAGE TOP