問題文全文(内容文):
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。
①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。
②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)
③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。
④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。
図は動画内参照
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。
①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。
②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)
③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。
④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。
図は動画内参照
単元:
#数学(中学生)#中1数学#空間図形#立体図形#立体図形その他
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。
①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。
②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)
③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。
④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。
図は動画内参照
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。
①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。
②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)
③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。
④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。
図は動画内参照
投稿日:2017.12.30





