問題文全文(内容文):
2006東京大学過去問題
n自然数
$x^n+y^n+z^n=xyz \cdots$①
(1)n=1のとき、$x \leqq y \leqq z$で①を満たす自然数(x,y,z)を求めよ。
(2)n=3のとき、①を満たす自然数(x,y,z)は存在しないことを示せ。
2006東京大学過去問題
n自然数
$x^n+y^n+z^n=xyz \cdots$①
(1)n=1のとき、$x \leqq y \leqq z$で①を満たす自然数(x,y,z)を求めよ。
(2)n=3のとき、①を満たす自然数(x,y,z)は存在しないことを示せ。
単元:
#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2006東京大学過去問題
n自然数
$x^n+y^n+z^n=xyz \cdots$①
(1)n=1のとき、$x \leqq y \leqq z$で①を満たす自然数(x,y,z)を求めよ。
(2)n=3のとき、①を満たす自然数(x,y,z)は存在しないことを示せ。
2006東京大学過去問題
n自然数
$x^n+y^n+z^n=xyz \cdots$①
(1)n=1のとき、$x \leqq y \leqq z$で①を満たす自然数(x,y,z)を求めよ。
(2)n=3のとき、①を満たす自然数(x,y,z)は存在しないことを示せ。
投稿日:2018.07.03