東大 整数 高校数学 Japanese university entrance exam questions Tokyo University - 質問解決D.B.(データベース)

東大 整数 高校数学 Japanese university entrance exam questions Tokyo University

問題文全文(内容文):
2006東京大学過去問題
n自然数
$x^n+y^n+z^n=xyz \cdots$①
(1)n=1のとき、$x \leqq y \leqq z$で①を満たす自然数(x,y,z)を求めよ。
(2)n=3のとき、①を満たす自然数(x,y,z)は存在しないことを示せ。
単元: #数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2006東京大学過去問題
n自然数
$x^n+y^n+z^n=xyz \cdots$①
(1)n=1のとき、$x \leqq y \leqq z$で①を満たす自然数(x,y,z)を求めよ。
(2)n=3のとき、①を満たす自然数(x,y,z)は存在しないことを示せ。
投稿日:2018.07.03

<関連動画>

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}
この動画を見る 

東邦大(理)

アイキャッチ画像
単元: #学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023東邦大学過去問題
θを求めよ
$9^{\sin^2θ}+9^{\cos^2θ}=6$
$0 \leqq θ \leqq \frac{\pi}{2}$
この動画を見る 

【数A】整数の性質:φ関数(φ(6)について) 問題文「1~nまでの自然数でnと互いに素な自然数の個数を求めよ」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1~nまでの自然数でnと互いに素な自然数の個数を求めよ
この動画を見る 

【数Ⅱ】微分法と積分法:一橋大学1989年 角度の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線C:y=x³上の点P(a,a³)(a>0)における接線をlとし、lが再びCと交わる点をQとする。また、QにおけるCの接線をmとし、lとmがなす角をθ(0<θ<π/2)とする。
(1)tanθをaを用いて表せ。
(2)aが正の実数値をとりながら変化するとき、θを最大にするaの値、および、そのときのtanθの値を求めよう。
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の曲線\hspace{210pt}\\
C:y=x^3-x\\
を考える。\\
(1)座標平面上の全ての点Pが次の条件(\textrm{i})を満たすことを示せ。\\
(\textrm{i})点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。\\
(2)次の条件(\textrm{ii})を満たす点Pのとりうる範囲を座標平面上に図示せよ。\\
(\textrm{ii})点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと\\
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。
\end{eqnarray}
この動画を見る 
PAGE TOP