大学入試問題#298 信州大学(2001 類題①) #定積分 - 質問解決D.B.(データベース)

大学入試問題#298 信州大学(2001 類題①) #定積分

問題文全文(内容文):
(1)
$\displaystyle \int_{1}^{3}\displaystyle \frac{x}{\sqrt{ x+1 }-1}dx$

(2)
$\displaystyle \int_{1}^{3}\displaystyle \frac{1}{\sqrt{ x+1 }-1}dx$

出典:2001年信州大学 入試問題
チャプター:

00:00 問題紹介
00:10 本編スタート
04:54 作成した解答①
05:05 作成した解答②
05:15 エンディング

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
(1)
$\displaystyle \int_{1}^{3}\displaystyle \frac{x}{\sqrt{ x+1 }-1}dx$

(2)
$\displaystyle \int_{1}^{3}\displaystyle \frac{1}{\sqrt{ x+1 }-1}dx$

出典:2001年信州大学 入試問題
投稿日:2022.09.02

<関連動画>

大学入試問題#109 大阪府立大学(2010) 無限級数

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{n}{n+5}\ a_n$のとき
$\displaystyle \sum_{n=1}^\infty\ a_n$を求めよ

出典:2010年大阪府立大学 入試問題
この動画を見る 

上智/京大 3次方程式/整式の除法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#上智大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$α = \{ (\frac{413}{8})^{\frac{1}{2}} +6 \} ^{\frac{1}{3}} - $ $ \{ (\frac{413}{8})^{\frac{1}{2}} -6 \} ^{\frac{1}{3}} $
αを解とする整数係数の3次方程式を求めよ。

京都大学過去問題
$(x^{100}+1)^{100}+(x^2+1)^{100}+1$は$x^2+x+1$で割り切れるか。
この動画を見る 

広島大 円の方程式 三角比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
2つの円
$x^2+y^2+(2\sqrt2sinθ)x-\frac{\sqrt{17}}{2}y+sin^2θ+$
$\frac{17}{16}=0$
$x^2+y^2=\frac{9}{16} \quad (0^\circ < θ < 180^\circ)$
が共有点をもたないようなθの範囲を求めよ。
この動画を見る 

関西医科大学 2011 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \pi } \displaystyle \frac{\sin\ x}{x^2-\pi^2}$

出典:2011年関西医科大学
この動画を見る 

大学入試問題#511「数検1級の1次に類題が出てるはず」 浜松医科大学(2015) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{(3n+1)(3n+2)・・・(3n+n)}{(n+1)(n+2)・・・(n+n)})^{\frac{1}{n}}$

出典:2015年浜松医科大学 入試問題
この動画を見る 
PAGE TOP