福田の数学〜慶應義塾大学2022年薬学部第1問(6)〜三角関数の連立方程式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年薬学部第1問(6)〜三角関数の連立方程式

問題文全文(内容文):
(6)$0 \leqq x \leqq \pi, 0 \leqq y \leqq \pi$を満たすx,yに対して、等式$2\sin x+\sin y=1$が
成り立つとする。
$(\textrm{i})$この等式を満たすxの範囲は$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})x,y$が$2\cos x+\cos y=2\sqrt2$を満たすとき、$\sin(x+y)$の値を求めると
$\boxed{\ \ サ\ \ }$である。

2022慶應義塾大学薬学部過去問
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(6)$0 \leqq x \leqq \pi, 0 \leqq y \leqq \pi$を満たすx,yに対して、等式$2\sin x+\sin y=1$が
成り立つとする。
$(\textrm{i})$この等式を満たすxの範囲は$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})x,y$が$2\cos x+\cos y=2\sqrt2$を満たすとき、$\sin(x+y)$の値を求めると
$\boxed{\ \ サ\ \ }$である。

2022慶應義塾大学薬学部過去問
投稿日:2022.03.03

<関連動画>

【数学】中2-17 連立方程式④ 代入法編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
どちらかの式の左辺を①____としよう!
【代入法で解いてね!】

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=y+1 \\
3x-2y=5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=4 \\
y=3x-5
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=-1 \\
-2x+5y=-13
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x=3y-7 \\
4x-7y=-17
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

気付けば気持ちいい!!連立方程式 慶應義塾

アイキャッチ画像
単元: #連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
3x + 2y = 6 \\
6xy = 5
\end{array}
\right.
\end{eqnarray}

慶應義塾高等学校
この動画を見る 

連立方程式 求めるな!  市川高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
320x + 117y = 2 \\
100x + 101y = 1
\end{array}
\right.
\end{eqnarray}
$
のときx:y=?

市川高等学校
この動画を見る 

気付けば一瞬な連立方程式

アイキャッチ画像
単元: #連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
x + y +2z= 2 \\
x + 2y +z= 7 \\
2x + y + z = -1
\end{array}
\right.
\end{eqnarray}
この動画を見る 

手強いぞ 連立方程式 慶應義塾(神奈川)

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け(x>y)
\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y + xy^2 -9xy = 120 \\
xy + x + y - 9 = -22
\end{array}
\right.
\end{eqnarray}

2023慶應義塾高等学校(改)
この動画を見る 
PAGE TOP