福田の数学〜慶應義塾大学2022年薬学部第1問(6)〜三角関数の連立方程式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年薬学部第1問(6)〜三角関数の連立方程式

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (6) 0 \leqq x \leqq \pi, 0 \leqq y \leqq \piを満たすx,yに対して、等式2\sin x+\sin y=1が\\
成り立つとする。\\
(\textrm{i})この等式を満たすxの範囲は\boxed{\ \ コ\ \ }である。\\
(\textrm{ii})x,yが2\cos x+\cos y=2\sqrt2を満たすとき、\sin(x+y)の値を求めると\\
\boxed{\ \ サ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
単元: #連立方程式#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (6) 0 \leqq x \leqq \pi, 0 \leqq y \leqq \piを満たすx,yに対して、等式2\sin x+\sin y=1が\\
成り立つとする。\\
(\textrm{i})この等式を満たすxの範囲は\boxed{\ \ コ\ \ }である。\\
(\textrm{ii})x,yが2\cos x+\cos y=2\sqrt2を満たすとき、\sin(x+y)の値を求めると\\
\boxed{\ \ サ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
投稿日:2022.03.03

<関連動画>

福田のおもしろ数学014〜恒例10秒チャレンジ〜3変数の連立方程式

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=4 \\
y+z=3 \\
z+x=5
\end{array}
\right.
\end{eqnarray}$
を解け.
この動画を見る 

2次式 連立方程式 国学院高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x + 2y = 7 \\
(x-y)^2+2(x-y)-15 = 0
\end{array}
\right.
\end{eqnarray}
x=? y=?
(x<y)

國學院高等学校
この動画を見る 

【見た目以上に難しい!?】連立方程式:ラ・サール高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x-\dfrac{1}{2}(y+1)=1 \\
\dfrac{1}{3}(x+1)+\dfrac{3}{4}(y-1)=9
\end{array}
\right.
\end{eqnarray}$
この連立方程式を解け.

ラサール高校過去問
この動画を見る 

連立3元4次方程式

アイキャッチ画像
単元: #連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y^2+x^2+y^2=49 \\
y^2z^2+y^2+z^2=169\\
z^2x^2+z^2+x^2=84 \\
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

【道具を使いこなせ!】連立方程式:東京都公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京都公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=1 \\
8x+9y=7
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け.

東京都公立高等学校過去問
この動画を見る 
PAGE TOP