大学入試問題#304 早稲田大学2010 #区分求積法 #極限 - 質問解決D.B.(データベース)

大学入試問題#304 早稲田大学2010 #区分求積法 #極限

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\sqrt[ n ]{ (n+1)(n+2)-(n+n) }$

出典:2010年早稲田大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\sqrt[ n ]{ (n+1)(n+2)-(n+n) }$

出典:2010年早稲田大学 入試問題
投稿日:2022.09.08

<関連動画>

福田の数学〜上智大学2025TEAP利用型文系第1問〜放物線と円の位置関係と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

座標平面上の放物線$C_1:y=x^2$と

円$C_2:x^2+(y-b)^2=a^2$を考える。

ただし、$a,b$は正の実数とする。

(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための

必要十分条件は

$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。

(2)$C_1$と$C_2$が異なる$2$点で接するための

必要十分条件は

$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。

(ただし、$C_1$と$C_2$が共有点$P$で接するとは、

$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)

また、このとき$2$つの接点のうち$x$座標が

正のものを$A(\alpha,\beta)$とすると、

$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。

$A$における共通の接線の傾きが$\sqrt3$であるとき、

直線$y=\beta$の下側で、

$C_1$と$C_2$に囲まれた部分の面積は

$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。

$2025$年上智大学TEAP利用型文系過去問題
この動画を見る 

大学入試問題#173 和歌山県立医科大学(2000) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#和歌山県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \cos^2x\ \sin^3x\ dx$を計算せよ。

出典:2000年和歌山県立医科大学 入試問題
この動画を見る 

#前橋工科大学2024#定積分_13#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{1}{2}(1-\cos x)^2 dx$

出典:2024年前橋工科大学
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
正の整数nに対して、
$S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)$
とする。
(1)正の実数xに対して、次の不等式が成り立つことを示せ。
$\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}$

(2)極限値$\lim_{n \to \infty}S_n$を求めよ。

2022東北大学理系過去問
この動画を見る 

因数分解 京都産業大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(x^2-2x)^2-2x^2+4x-3$を因数分解せよ。

京都産業大学
この動画を見る 
PAGE TOP