大学入試問題#16 埼玉大学(2020) 式変形 - 質問解決D.B.(データベース)

大学入試問題#16 埼玉大学(2020) 式変形

問題文全文(内容文):
実数$x,y$が$(x-3)^2+(y-3)^2=8$を満たすとき
$x+y,\ xy$のとりうる値の範囲を求めよ。

出典:2020年埼玉大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学
指導講師: ますただ
問題文全文(内容文):
実数$x,y$が$(x-3)^2+(y-3)^2=8$を満たすとき
$x+y,\ xy$のとりうる値の範囲を求めよ。

出典:2020年埼玉大学 入試問題
投稿日:2021.09.24

<関連動画>

#青山学院大学#不定積分#ますただ

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int xe^{1-x^2}dx$

出典:青山学院大学
この動画を見る 

福田の数学〜千葉大学2023年第9問〜関数の増減と最大Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{9}$ 関数$f(x)$と実数$t$に対し、$x$の関数$tx$-$f(x)$の最大値があればそれを$g(t)$と書く。
(1)$f(x)$=$x^4$のとき、任意の実数$t$について$g(t)$が存在する。この$g(t)$を求めよ。
以下、関数$f(x)$は連続な導関数$f''(x)$を持ち、次の2つの条件(i),(ii)が成り立つものとする。
(i)$f'(x)$は増加関数、すなわち$a$<$b$ならば$f'(a)$<$f'(b)$
(ii)$\displaystyle\lim_{x \to -\infty}f'(x)$=$-\infty$ かつ $\displaystyle\lim_{x \to \infty}f'(x)$=$\infty$
(2)任意の実数$t$に対して、$x$の関数$tx$-$f(x)$は最大値$g(t)$を持つことを示せ。
(3)$s$を実数とする。$t$が実数全体を動くとき、$t$の関数$st$-$g(x)$は最大値$f(s)$となることを示せ。
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(7)〜四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (7)座標空間内に4点$A(0,-2,2),\ B(0,2,2),\ C(2,0,-2),\ D(-2,0,-2)$がある。
この4点を頂点とする四面体ABCDの体積は$\boxed{シ}$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

防衛大 漸化式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
防衛大学過去問題
$a_1=1 \quad a_{n+1}=2^{2n-2}(a_n)^2$
n自然数、一般項を求めよ。
この動画を見る 

会津大学2014 #定積分 #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x\sqrt{ e^x-1 }\ dx$

出典:2019年会津大学
この動画を見る 
PAGE TOP