【中1 数学】中1-21 文字式と数の乗法・除法① - 質問解決D.B.(データベース)

【中1 数学】中1-21 文字式と数の乗法・除法①

問題文全文(内容文):
(  )に$\times ,\div$がくっついているなら
①____法則を使おう!
【レベル1】
$3x\times(-4)=$
$(-5x)\times(-3)=$
$-18a \div9=$
$4x \times (-\displaystyle \frac{3}{2})=$
$10x \div (-\displaystyle \frac{5}{2})$
【レベル2】
$3(2x-4)=$
$(-y+3)\times (-2)=$
$(12x-9) \div (-6)=$
$-6(\displaystyle \frac{4}{3} x-1)=$
$\displaystyle \frac{3}{2}(6a-2)=$
$(6x-9) \div \displaystyle \frac{3}{4}=$
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
(  )に$\times ,\div$がくっついているなら
①____法則を使おう!
【レベル1】
$3x\times(-4)=$
$(-5x)\times(-3)=$
$-18a \div9=$
$4x \times (-\displaystyle \frac{3}{2})=$
$10x \div (-\displaystyle \frac{5}{2})$
【レベル2】
$3(2x-4)=$
$(-y+3)\times (-2)=$
$(12x-9) \div (-6)=$
$-6(\displaystyle \frac{4}{3} x-1)=$
$\displaystyle \frac{3}{2}(6a-2)=$
$(6x-9) \div \displaystyle \frac{3}{4}=$
投稿日:2013.05.16

<関連動画>

これ説明できる?

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
100gのケーキを3等分したときに、角度はできるのに100gって3等分にできなくないですか?
この質問に対しての解説動画です
この動画を見る 

中1数学「正の数・負の数の除法」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
正の数・負の数の除法に関して解説していきます。
この動画を見る 

【受験対策】数学-資料の活用③

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎ある年の7月に、野球チームA、Bがそれぞれ試合を行った。
右の図は、Aチームが行った全試合におけるそれぞれの得点の記録をヒストグラムに表したものである。
また、表は、Bチームが行った全試合におけるそれぞれの得点の記録を度数分布表にまとめたものであり、Bチームが行った全試合の得点の合計は108点である。
このとき、①~③に答えよう。

①図における中央値を求めよう。

②表の中の(i),(ii)にあてはまる数を求めよう。

③図、表からわかることとして正しいものを次の㋐~㋔の中から2つ選ぼう。

㋐Aチームの試合数はBチームの試合数より多く、Aチームの全試合の得点の合計はBチームの全試合の得点の合計より多い。

㋑Aチームの得点の最頻値はAチームの得点の平均値と等しいが、Bチームの得点の最頻値はBチームの得点の平均値と異なる。

㋒Aチームの得点の範囲はBチームの得点の範囲より大きく、Aチームが10点以上得点した試合数はBチームが10点以上得点した試合数より多い。

㋓Aチームの得点の平均値はBチームの得点の平均値より大きく、Aチームの得点の最頻値はBチームの得点の最頻値より小さい。

㋔Aチームの得点は、Aチームの試合の半数以上でAチームの得点の平均値以上である。

※図/表は動画内参照
この動画を見る 

【中学数学】四角形の面積を2等分する直線のまとめ【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平行と合同#平面図形#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図、点Aを通て、四角形OABCを二等分する直線の式を求めよ。
この動画を見る 

【中1 数学】中1-37 方程式の利用⑤ 追いつく編

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
みはじの問題は①__を書こう!

◎兄が1800m離れたコンビニに向かって家を出発した。
それから10分後に、妹が兄が忘れた財布を持って、自転車で同じ道を追いかけた。
兄は分速90m、妹は分速270mで進むとする。

②妹が出発してから何分後に追いつく?

③家から何m離れたところで追いつく?

④もし妹が16分後に家を出たとしたら、兄がコンビニに着くまでに追いつける?
(理由も答えてね!)
この動画を見る 
PAGE TOP