問題文全文(内容文):
$f(x)$微分可能
$f(x)+\displaystyle \int_{0}^{x}f(t)e^{x-t}dt=\sin\ x$をみたす
$f(0),f'(x),f(x)$を求めよ
出典:2011年横浜市立大学医学部 入試問題
$f(x)$微分可能
$f(x)+\displaystyle \int_{0}^{x}f(t)e^{x-t}dt=\sin\ x$をみたす
$f(0),f'(x),f(x)$を求めよ
出典:2011年横浜市立大学医学部 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師:
ますただ
問題文全文(内容文):
$f(x)$微分可能
$f(x)+\displaystyle \int_{0}^{x}f(t)e^{x-t}dt=\sin\ x$をみたす
$f(0),f'(x),f(x)$を求めよ
出典:2011年横浜市立大学医学部 入試問題
$f(x)$微分可能
$f(x)+\displaystyle \int_{0}^{x}f(t)e^{x-t}dt=\sin\ x$をみたす
$f(0),f'(x),f(x)$を求めよ
出典:2011年横浜市立大学医学部 入試問題
投稿日:2022.09.07