中央大学経済学部の数学で範囲外出題 #shorts - 質問解決D.B.(データベース)

中央大学経済学部の数学で範囲外出題 #shorts

問題文全文(内容文):
まさかの事態発生!中央大学経済学部の数学入試で、**出題範囲外**の疑惑が浮上しました!

今年の入まさかの事態発生!中央大学経済学部の数学入試で、**出題範囲外**の疑惑が浮上しました!

今年の入試では、「整数問題は出題しない」としていたにも関わらず、受験生から「整数問題が出てるじゃないか」という声が複数上がっています。

今回問題視されているのは、「2025の正の約数のうち、素数でないものは何個あるか?」という問題。これは基本中の基本だという意見もあれば、「これは整数問題の範囲だからダメだろう」という意見も出ています。

中央大学経済学部の数学の範囲は、数学I・IIと、数学Aの「図形の性質」「場合の数と確率」と明記されています。この問題が、範囲外とされる整数問題とみなすべきなのか、それとも基礎的な問題として許容されるのか、専門家の間でも意見が分かれている状況です。

この問題、範囲内?それとも範囲外?数学の先生方の意見が待たれます!
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
まさかの事態発生!中央大学経済学部の数学入試で、**出題範囲外**の疑惑が浮上しました!

今年の入まさかの事態発生!中央大学経済学部の数学入試で、**出題範囲外**の疑惑が浮上しました!

今年の入試では、「整数問題は出題しない」としていたにも関わらず、受験生から「整数問題が出てるじゃないか」という声が複数上がっています。

今回問題視されているのは、「2025の正の約数のうち、素数でないものは何個あるか?」という問題。これは基本中の基本だという意見もあれば、「これは整数問題の範囲だからダメだろう」という意見も出ています。

中央大学経済学部の数学の範囲は、数学I・IIと、数学Aの「図形の性質」「場合の数と確率」と明記されています。この問題が、範囲外とされる整数問題とみなすべきなのか、それとも基礎的な問題として許容されるのか、専門家の間でも意見が分かれている状況です。

この問題、範囲内?それとも範囲外?数学の先生方の意見が待たれます!
投稿日:2025.02.19

<関連動画>

福田の数学〜中央大学2021年経済学部第1問(5)〜漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)次の条件によって定められる数列$\left\{a_n\right\}$の一般項を求めよ。
$a_1=-1, a_{n+1}=a_n+2・3^{n-1}  (n=1,2,3,\ldots)$

2021中央大学経済学部過去問
この動画を見る 

福島大 基本対称式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$

①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$

2021福島大過去問
この動画を見る 

#名古屋工業大学2024#不定積分_18#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\sqrt{ 2 }$ $logx$ $dx$

出典:2024年 名古屋工業大学
この動画を見る 

福田の数学〜北海道大学2025理系第5問〜条件を満たす3つの整数を選び出す場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$3$以上の整数とする。

(1)$k$を整数とする。

$k\lt a\lt b \lt c \leqq k+n$を満たす

整数$a,b,c$の選び方の

総数を$n$の式で表せ。

(2)$1\leqq a \lt b \lt c \leqq 2n$を満たす

整数$a,b,c$のうち、

$a+b \gt c$となる$a,b,c$の選び方の総数を$L$とする。

このとき、$L\gt {}_n \mathrm{ C }_3 $であることを示せ。
   
この動画を見る 

福田の数学〜北里大学2024医学部第1問(1)〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2つの実数x,yは$x^2+y^2 \leqq 4,x \geqq 0 $を満たすとする。このとき、$3x+4y-3$の最小値は$\boxed{ ア }$、最大値は$\boxed{ イ }$である。また、$3x^2+4xy-3y^2$の最大値は$\boxed{ ウ }$である。
この動画を見る 
PAGE TOP