明るい気分で数学の流れ!~全国入試問題解法 #数学 #数検 #歌ってみた #点数 #弾き語り - 質問解決D.B.(データベース)

明るい気分で数学の流れ!~全国入試問題解法 #数学 #数検 #歌ってみた #点数 #弾き語り

問題文全文(内容文):
明るい気分で数学の流れ!

$\sqrt{ 2023 \times 2021 - 4044 + 2 }=?$
の値を求めよ。
単元: #数学(中学生)#中3数学#平方根
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
明るい気分で数学の流れ!

$\sqrt{ 2023 \times 2021 - 4044 + 2 }=?$
の値を求めよ。
投稿日:2024.06.27

<関連動画>

穴埋め問題 平方根

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\boxed{ア} \boxed{イ}} = \boxed{ア} + \sqrt{\boxed{イ}}$
(ア,イは1~9の自然数 ア<イ)
この動画を見る 

【高校受験対策/数学】死守-78

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78

①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。

②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。

③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。

ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$

④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る 

【高校受験対策/数学】死守-86

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#平方根#比例・反比例#空間図形#2次関数#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守86 @1:57

①$3×(-8)$を計算しなさい。

➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。

③$-8x^3÷4x^2×(-x)$を計算しなさい。

④$\sqrt{50}+\sqrt{2}$を計算しなさい。

⑤六角形の内角の和を求めなさい。

⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。

⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。

⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。

⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。

この動画を見る 

区別できる?

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 3)^2=$
$\sqrt {3^2}=$
$(\sqrt {-3})^2=$
$\sqrt {(-3)^2}=$
この動画を見る 

四捨五入

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{65}-\sqrt{63}$の小数第三位を四捨五入せよ.
この動画を見る 
PAGE TOP