【他の解き方は…!】連立方程式:洛南高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【他の解き方は…!】連立方程式:洛南高等学校~全国入試問題解法

問題文全文(内容文):
連立方程式
$\begin{equation}
\left\{ \,
\begin{aligned}
& \frac{3}{x}+\frac{2}{y}=7 \\
& \frac{5}{x}-\frac{4}{y}=8
\end{aligned}
\right.
\end{equation}\;$を解きなさい。
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#洛南高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式
$\begin{equation}
\left\{ \,
\begin{aligned}
& \frac{3}{x}+\frac{2}{y}=7 \\
& \frac{5}{x}-\frac{4}{y}=8
\end{aligned}
\right.
\end{equation}\;$を解きなさい。
投稿日:2024.09.11

<関連動画>

【1分で方向性を理解!】確率:大東文化大学第一高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
展開図のさいころを組み立て,2つ同時に振る.
(1)2つのさいころの出る目の和は全部で何通りあるか.
(2)2つのさいころの出る目の和が奇数となる確率を求めよ.

大東文化大第一高校過去問
この動画を見る 

【テスト対策 中1】4章-6

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図において、①は関数$y=ax$、②は関数$y=\dfrac{18}{x}$のグラフである。
点$A$は①と②の交点で、その$y$座標は6である。
このとき、次の問いに答えなさい。

(1)点$A$の座標を求めなさい。

(2)定数$a$の値を求めなさい。

(3)②のグラフ上の点で、$x$座標と$y$座標がともに整数となる点は
全部で何個あるか求めなさい。

(4)点$A$から$x$軸、$y$軸にひいた垂線が$x$軸、$y$軸と交わる点をそれぞれ
$B、C$とし、①のグラフ上に点$P$、$y$軸上に$y$標が8である点をとる。
三角形$OPQ$の面積が四角形$OBAC$の面積と等しくなるとき、
点$P$の座標をすべて求めなさい。

図は動画内参照
この動画を見る 

中2数学「式による説明①(偶数と奇数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明①~(偶数と奇数)

例1
偶数と奇数の和は奇数になることを説明しなさい。

例2
奇数と奇数の和は偶数になることを説明しなさい。

例3
偶数と奇数の積は偶数になることを説明しなさい。
この動画を見る 

【数学】中2-57 三角形の合同② 応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の三角形はすべて合同といえる?

①一辺の長さが6cmの正方形

②2つの内角が60°と70°の三角形

③等しい辺の長さが10cmの二等辺三角形

◎$\triangle ABC$と$\triangle DFE$で、あと1つどんな条件を加えれば合同といえる?

④$AB=DE、AC=DF$

⑤$\angle ABC= \angle DEF、BC=EF$
※図は動画内参照
この動画を見る 

【現実は厳しい?】連立方程式:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 早稲田大学系属早稲田実業学校高等部

$\begin{eqnarray}
\left\{
\begin{array}{l}
Ax + By = 12 ・・・(ァ)\\
Bx-Ay = 16 ・・・(イ)\\
6x-8y=C  ・・・(ウ)\\
Dx-6y=E ・・・(エ) \\
\end{array}
\right.
\end{eqnarray}$

条件Ⅰ:アとウを連立→解なし。
条件Ⅱ:アとエを連立→解:$x=8,y=9$
条件Ⅲ:「ウとエを連立した解」
   →「アとイを連立した解」
よりの値は$6$大きく、$y$の値は$2$大きい。
①$A,B$の値をそれぞれ求めよ。
②$C.E$の値をそれぞれ求めよ。
この動画を見る 
PAGE TOP