【高校受験対策】数学-規則性7 - 質問解決D.B.(データベース)

【高校受験対策】数学-規則性7

問題文全文(内容文):
高校受験対策・規則性7

Q.
白い碁石と黒い碁石がたくさんある。
これらの碁石を、右下の図のように白、黒、黒、白、黒、黒・・・と白1個・黒1個の順で、
1段目には1個、2段目には2個、3段目には3個・・・を矢印の方向に規則的に置いていく。
このとき、次の問いに答えなさい。

①8段目に置かれている碁石のうち、白い碁石は全部で何個か。

②1段目から15段目までに置かれている碁石のうち、3列目に置かれている 白い碁石は全部で何個か。

③$n$段目から$(n+2)$段目までに置かれている碁石の個数は、白と黒を 合わせると全部でア個であり、
そのうち白い碁石の個数はイ個である。ア,イに当てはまる数をそれぞれのを使って表せ。

④$x$段目に置かれている碁石のうち、白い碁石の個数が全部で20個となるときの、$x$の値を全て求めよ。
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・規則性7

Q.
白い碁石と黒い碁石がたくさんある。
これらの碁石を、右下の図のように白、黒、黒、白、黒、黒・・・と白1個・黒1個の順で、
1段目には1個、2段目には2個、3段目には3個・・・を矢印の方向に規則的に置いていく。
このとき、次の問いに答えなさい。

①8段目に置かれている碁石のうち、白い碁石は全部で何個か。

②1段目から15段目までに置かれている碁石のうち、3列目に置かれている 白い碁石は全部で何個か。

③$n$段目から$(n+2)$段目までに置かれている碁石の個数は、白と黒を 合わせると全部でア個であり、
そのうち白い碁石の個数はイ個である。ア,イに当てはまる数をそれぞれのを使って表せ。

④$x$段目に置かれている碁石のうち、白い碁石の個数が全部で20個となるときの、$x$の値を全て求めよ。
投稿日:2019.09.10

<関連動画>

【高校受験対策/数学】死守53

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53

①$2-(-9)$を計算せよ。

②$52a^2b \div (-4a)$を計算せよ。

③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。

④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。

⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。

⑥2次方程式$x^2-5x-3=0$を解きなさい。

⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。

⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。

⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。

⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る 

目盛りをみると答えがわかる 2023高校入試数学解説73問目 東京都

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△BPQ=△APB×2
点Pのx座標は?
*図は動画内参照

2023東京都
この動画を見る 

2021早稲田本庄(改)C 図形

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形の面積をa,b,cで表せ
*図は動画内参照

2021早稲田大学 本庄高等学院
この動画を見る 

【中学数学・数B】1次関数・平面ベクトル:座標平面上の三角形の面積

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#1次関数#平面図形
指導講師: 理数個別チャンネル
問題文全文(内容文):
2x+y-6=0
2x-y+2=0
2x-7y-22=0
によって作られる三角形の面積は?
この動画を見る 

中学レベル図形問題 答えはあれではありません

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学レベル図形問題に関して解説していきます.
この動画を見る 
PAGE TOP