大学入試問題#745「落ち着けばどうにかなる」 早稲田大学理工学部(2002) 微積の応用 - 質問解決D.B.(データベース)

大学入試問題#745「落ち着けばどうにかなる」 早稲田大学理工学部(2002) 微積の応用

問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$とする。
$I(\theta)=\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-\tan\theta\cos\ x|\sin2x\ dx$

(1)$I(\theta)$を求めよ。
(2)$I(\theta)$を最小にする$\theta$に対し、$\cos\theta$の値を求めよ。

出典:2002年早稲田大学理工学部 入試問題
チャプター:

00:00 問題紹介
09:23 作成した解答①
09:34 作成した解答②
09:43 作成した解答③

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$とする。
$I(\theta)=\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-\tan\theta\cos\ x|\sin2x\ dx$

(1)$I(\theta)$を求めよ。
(2)$I(\theta)$を最小にする$\theta$に対し、$\cos\theta$の値を求めよ。

出典:2002年早稲田大学理工学部 入試問題
投稿日:2024.02.24

<関連動画>

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
この動画を見る 

福田の数学〜東京工業大学2022年理系第2問〜3つの数の最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3つの正の整数a,b,cの最大公約数が1であるとき、次の問いに答えよ。
(1)$a+b+c,ab+bc+ca,abc$の最大公約数は1であることを示せ。
(2)$a+b+c,a^2+b^2+c^2,a^3+b^3+c^3$の最大公約数となるような正の整数を
全て求めよ。

2022東京工業大学理系過去問
この動画を見る 

大阪教育大 場合の数 自然数を和で表す Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n$をそれより小さい自然数の和で表す。
$2=1+1$の1通り
$3=1+1+1,1+2,2+1$の3通り
次の場合それぞれ何通りか。

(1)4
(2)5
(3)$n$

出典:2002年大阪教育大学 過去問
この動画を見る 

福田の数学〜千葉大学2024年文系第2問〜袋から元に戻さないで球を取り出し得点を考える確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
白球が3個、黒球が5個、赤球が2個入った袋がある。以下のゲームを続けて$n$回続けて行う。
袋から球を1個取り出す。白球だった場合は1点を獲得する。黒球だった場合はさいころを投げて、出た目が3の倍数だった場合には1点、そうでない場合には0点を獲得する。赤球だった場合はコインを投げて、表が出た場合は2点、裏が出た場合は0点を獲得する。取り出した球は袋に戻さない。
(1) $n=2$のとき、総得点がちょうど3点となる確率を求めよ。
(2) $n=3$のとき、総得点がちょうど5点となる確率を求めよ。
(3) $n=3$のとき、総得点が4点以上となる確率を求めよ。
この動画を見る 

大学入試問題#93 昭和大学医学部(2016) 対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$log_xy=log_yx=-log_3(x+y)$をみたす実数$x,y$を求めよ。

出典:2016年昭和大学医学部 入試問題
この動画を見る 
PAGE TOP